
Simple Event Correlator Tutorial

Risto Vaarandi

January 1, 2024

Abstract

Simple Event Correlator (SEC) is a lightweight and platform inde-
pendent UNIX tool that is designed for tackling a wide range of event
correlation and other event processing tasks. This tutorial complements
the o�cial SEC documentation (SEC man page) and provides a gentle
introduction to SEC. The tutorial �rst discusses how to run SEC and its
most commonly used command line options. The tutorial then provides
an introduction into SEC rules, event correlation operations, contexts, and
synthetic events. Finally, the tutorial covers some advanced topics such
as building hierarchical rulebases and using custom code in SEC rules.

Copyright ©2022�2024 Risto Vaarandi

Contents

1 Introduction 3

1.1 Introduction to SEC . 3
1.2 The purpose of this tutorial . 3
1.3 Prerequisites . 4

2 Getting started 4

2.1 An example of a simple con�guration �le 4
2.2 Running SEC interactively . 5
2.3 Running SEC as a daemon . 6
2.4 Rule application order . 8
2.5 Commonly used SEC actions . 11

3 Event correlation 13

3.1 SingleWithThreshold rule and introduction to event correlation
operations . 13

3.2 Variable substitution for event correlation operations 16
3.3 SingleWithThreshold operations and sliding window based event

correlation . 16
3.4 EventGroup rule . 18
3.5 EventGroup operations with multiple actions 20
3.6 EventGroup rule for detecting ordered event sequences 21
3.7 PairWithWindow rule . 23

4 Contexts and pattern match caching 27

4.1 Introduction to contexts . 27
4.2 Using contexts for rule activation and deactivation 28
4.3 Using contexts for event collection and reporting 30
4.4 Pattern match caching . 32
4.5 Internal contexts . 34

5 Synthetic events 36

5.1 Introduction to synthetic events 36
5.2 Generating synthetic events from Calendar rule 37
5.3 Receiving synthetic events from periodically executed commands 39
5.4 Receiving synthetic events from inde�nitely running commands . 42

6 Advanced topics 43

6.1 Hierarchical rulebases . 43
6.2 Using custom code in context expressions 47
6.3 Using custom code in event matching patterns 49
6.4 Using custom code in event group patterns 50

7 Conclusion 53

2

1 Introduction

1.1 Introduction to SEC

Simple Event Correlator (SEC) is an event correlation tool which can be har-
nessed for event log monitoring, for network and security management, for fraud
detection, and for any other task which involves event correlation. In research
literature, event correlation is de�ned as a procedure where a stream of events is
processed in order to detect (and act on) certain event groups that occur within
prede�ned time windows [1].

Many traditional event log management systems store events in a database
and execute database queries for implementing event correlation. However,
such systems are heavyweight solutions and often involve a complex database
infrastructure on dedicated hardware.

In contrast, SEC is a lightweight and platform independent event correlator
that is implemented as a UNIX tool and runs as a single process. For facilitating
deterministic event processing, SEC is single-threaded. However, since it has a
small memory footprint, it is straightforward to run several SEC processes with
independent rulebases on the same system.

The user can start SEC as a daemon, employ it in shell pipelines, execute
it interactively in a terminal, run many SEC processes simultaneously for dif-
ferent tasks, and use it in a wide variety of other ways. Note that unlike many
traditional event correlation solutions, SEC implements database-less event cor-
relation � it does not rely on any database technology and query-based event
batch processing, but correlates incoming event streams in real-time with the
help of memory-based data structures.

SEC reads lines from �les, named pipes, or standard input, matches the
lines with patterns (like regular expressions or Perl subroutines) for recognizing
input events, and correlates events according to the rules in its con�guration
�le(s). SEC can produce output by executing external programs (e.g., snmptrap
or mail), by writing to �les, by sending data to TCP and UDP based servers,
by calling precompiled Perl subroutines, etc.

SEC is written in Perl and has been publicly available since March 23, 2001
under the terms of GNU GPL version 2.

1.2 The purpose of this tutorial

When SEC was released in 2001, it started as a relatively simple tool, but over
time its complexity has grown, and so has the volume of its o�cial documen-
tation. To provide a compact introduction to SEC capabilities, several papers
have been published over the last two decades [2, 3, 4, 5, 6, 7]. However, since
SEC is constantly evolving, the past papers are not covering the newer features
introduced after the papers were published.

The purpose of this tutorial is to address this issue, and be a live document
that is updated after new major features have emerged. Note that this tutorial
is not designed to be a replacement for the o�cial documentation (SEC man
page), but rather complement it by providing a gentle introduction to SEC.

3

1.3 Prerequisites

Reading this tutorial assumes familiarity with regular expressions (e.g., see [8]),
UNIX shells, and commonly used UNIX tools. The examples in this tutorial
assume the use of SEC version 2.9.1 or higher.

2 Getting started

2.1 An example of a simple con�guration �le

SEC event correlation rules are stored in one or more con�guration �les (some-
times also called rule �les). As an example of a simple con�guration �le that
contains only one rule, consider the �le echo.sec provided by Listing 1.

Listing 1: The content of echo.sec

a simple rule example

type=Single

rem=the pattern provided below matches \

any non -empty input line , assigning \

the entire line to the $0 match variable

ptype=RegExp

pattern =.

desc=echo input line

action=write - %t: $0

end of the rule definition

As can be seen from Listing 1, the rule de�nition consists of keyword-value
pairs provided on separate lines. Each line that starts with the # character
is treated as a comment line. Also, any comment line or empty line acts as
a delimiter between rule de�nitions (that means you can't insert such lines in
between keyword-value lines in the rule de�nition). In order to insert a comment
into the rule de�nition, the rem keyword has to be used (see Listing 1).

As mentioned before, each keyword-value pair that is a part of the rule
de�nition must reside on a separate line. If the value for the keyword is too long
for one line, the value can be continued on the next line, ending the current line
with \(backslash character). For example, see the value of the rem keyword in
Listing 1.

The example con�guration �le from Listing 1 contains one rule of type Single.
The Single rule is the simplest of all SEC rules which matches an input event
with the pattern de�ned with the ptype and pattern keywords, and on successful
match immediately executes the action list de�ned with the action keyword.

The Single rule from Listing 1 uses a regular expression pattern for matching
input lines. The pattern type is de�ned with the ptype keyword � for example,
RegExp denotes a regular expression for matching a 1-line input event, RegExp2
denotes a regular expression pattern for matching a 2-line input event, etc.

The regular expression pattern is provided with the pattern keyword. Note
that the pattern from Listing 1 (.) matches any non-empty input line. Also,
note that capture groups of regular expression patterns set match variables,
with the $0 variable being set to the entire matching event. The $0 variable

4

is set even if there are no capture groups in the expression. If capture groups
(...) are present, the leftmost capture group sets the $1 variable, the next
capture group the $2 variable, etc. For example, when the regular expression
([A-Z]+)([0-9]+) matches the event TEST25, the match variables $0, $1, and
$2 will be set to TEST25, TEST, and 25 respectively.1

The action keyword of the rule speci�es an action list containing one write
action. This action opens the �le with a name provided by the �rst parameter
(if not already open), and writes the string that follows the �lename parame-
ter to the given �le, terminating the string with the newline character (ASCII
10). Since the special �lename - (dash character) denotes standard output, the
write action from Listing 1 sends the string this is my message<NEWLINE>
to standard output.

Finally, the desc keyword de�nes the operation description string of the SEC
event correlation rule. The value of this keyword determines how many event
correlation operations a rule can start and what is the scope of each operation.
However, since the Single rule takes an immediate action when a matching event
has been observed, it doesn't start any event correlation operations. We will
return to a more detailed discussion on the importance of the desc keyword in
Section 3.1.

2.2 Running SEC interactively

Probably the simplest way of using SEC is to run it interactively in a terminal
window, so that lines entered from the keyboard would be processed, using the
rules from some con�guration �le. For example, for using the con�guration �le
from Listing 1 in such a way, SEC can be started with the following command
line (note that specifying - for the input �le with --input=- denotes reading
from standard input):

sec --conf=echo.sec --input=-

Suppose SEC is started in such a way and the user types in the following
line at 21:09:46 on November 3, 2022:

Jan 1 1970 12:00:00 this is a test event

The Single rule from Listing 1 matches this event, and the write - %t: $0
action from this rule writes the following line to standard output:

Thu Nov 3 21:09:46 2022: Jan 1 1970 12:00:00 this is a test event

In addition, SEC prints out messages about its work to standard error (see
Figure 1).

The %t variable is an action list variable that represents the current time
in human-readable format. In the case of the above example, the value of %t is
Thu Nov 3 21:09:46 2022 which appears in the beginning of the output string
from the write action. After a separating colon and space, the value of the $0
match variable appears which is Jan 1 1970 12:00:00 this is a test event.

Although match variables and action list variables look similar, there are
several important di�erences between these two variable classes which are sum-
marized below:

1As mentioned in Section 1.3, this tutorial assumes familiarity with regular expressions,
and less knowledgeable reader is referred to regular expression tutorials and books such as [8].

5

Figure 1: Running SEC in a terminal window

� Match variables can be used in many rule �elds, while action list variables
are available in action lists only.

� After a rule has matched an event, the values of match variables are ac-
cessible in the current rule while the event is being processed (as discussed
in Section 4.4, pattern match caching allows for making match variables
available to other rules). However, after the event processing is complete,
the values of match variables are no longer available. In contrast, action
list variables have a global scope and most of them retain their values until
explicitly set to another value (excluding builtin action list variables like
%t that are automatically adjusted).

� Match variables are substituted with their values immediately after the
pattern match, while action list variables are substituted at the moment of
action list execution. Although in the case of the Single rule from Listing
1 the regular expression match is immediately followed by the execution
of the write action, other rule types that will be discussed in Section 3
might introduce a signi�cant time delay between the action list execution
and the pattern match that sets the match variables. In Section 3.2, a
relevant rule example is provided that illustrates the variable substitution
process.

There is another observation we can make from the output in Figure 1.
Although the input line had a timestamp from the past (Jan 1 1970 12:00:00),
SEC did not consider it as the occurrence time of the event and did not set the
%t variable to Thu Jan 1 12:00:00 1970.

The above observation re�ects an important property of SEC input event
handling model � the occurrence time of the input event is the time when SEC
observes the event according to local system clock.

In other words, SEC does not implement its own internal clock which is
driven by timestamps possibly found in input events, but rather queries the
system clock with time(2) system call as input events arrive. Note that time(2)
is also used for all other time measurements by SEC (time(2) returns the current
time as seconds since Jan 1 00:00:00 1970 UTC).

2.3 Running SEC as a daemon

For running SEC as a daemon, one needs to provide the --detach command
line option for SEC. However, using this option introduces the need for re-

6

Figure 2: Failure to �nd a con�guration �le

placing relative path names with absolute names on command line and in rule
de�nitions.

Figure 2 depicts a scenario of running SEC as a daemon, so that the con-
�guration �le name is provided with a relative path. The process of becoming
a UNIX daemon includes changing the working directory to the root directory
/ [9], and Figure 2 includes a relevant message. However, the con�guration �le
write-to-�le.sec is not found in that directory, and this triggers an error message.

In order to �x that issue, command line option like the following is needed:
--conf=/etc/sec/write-to-file.sec

Also, Listing 2 provides the content of write-to-�le.sec where the �le name for
the write action has been provided with an absolute path (/var/log/echo.log).

Listing 2: The content of /etc/sec/write-to-�le.sec

type=Single

ptype=RegExp

pattern =.

desc=write input line to file

action=write /var/log/echo.log %t: $0

When running SEC as a daemon, its debug and error messages that were
previously appearing in a terminal (see Figures 1 and 2) are no longer available,
but collecting these messages is important for troubleshooting purposes. For
con�guring the logging of such messages into a separate �le, the --log command
line option can be used, whereas the --debug option sets the logging verbosity
level (the highest level is the default). Also, it is often worthwhile to store the
process ID of the SEC daemon process into a dedicated �le with the --pid

option (for example, that eases the log rotation).
Here is an example command line for starting SEC as a daemon:

sec --conf=/etc/sec/write-to-file.sec --input=/var/log/secure

--detach --log=/var/log/sec.log --pid=/run/sec.pid

With the above options, SEC logs its own messages to /var/log/sec.log. Also,
it uses the write action from Listing 2 to append messages to /var/log/echo.log.
If at some point these two SEC output �les are rotated, SEC needs to be in-
formed about the need to reopen these �les, and that can be done by sending
the USR2 signal to the SEC process:

kill -USR2 `cat /run/sec.pid`

7

Note that SEC is able to detect and handle input �le rotations automatically.
Therefore, when the input �le /var/log/secure is rotated, SEC will switch over
to the new instance of /var/log/secure without needing a signal.

Also, you can con�gure SEC to monitor any number of input �les, for ex-
ample:

sec --conf=/etc/sec/write-to-file.sec

--input=/var/log/secure --input=/var/log/messages

--input=/var/log/maillog --input=/var/log/cron

--detach --log=/var/log/sec.log --pid=/run/sec.pid

When you update a con�guration �le, one option is to simply shut down
SEC and start it again, but that implies the loss of all event correlation state
stored in memory. For preventing that, you can send the ABRT signal to the
SEC process which triggers the so called soft restart, where SEC reloads the
modi�ed con�guration �le and tries to preserve as much event correlation state
as possible:

kill -ABRT `cat /run/sec.pid`

If you want to change SEC command line options without restarting it, you
can store your command line options in a resource �le, and provide the resource
�le path to SEC via the SECRC environment variable.

While the SEC log �le provides a lot of information about SEC activities and
the event correlation process, it is often wortwhile to query its event correlation
state, performance data, and other information. For doing that, send the USR1
signal to the SEC process:

kill -USR1 `cat /run/sec.pid`

On the reception of that signal, a dump �le will be created which holds
detailed information about the event correlation state and other useful data.
Default dump �le path is /tmp/sec.dump and it can be adjusted with the --dump
command line option.

Finally, any number of SEC daemons can run on the same machine simul-
taneously. However, in order to manage multiple SEC instances reliably, it is
important to con�gure a separate log �le and process ID �le for each instance.

2.4 Rule application order

So far, we have discussed simple scenarios involving one con�guration �le with
one rule. However, using many con�guration �les with a larger number of rules
raises the following question � what is the rule application order when input
events are processed?

To answer that question, consider a scenario where SEC has been started
with the following command line:

sec --conf=ltr1.sec --conf=ltr2.sec --input=-

In that case, the rules from �le ltr1.sec are applied �rst, followed by the
application of rules from �le ltr2.sec. If con�guration �les have been provided

8

with a wildcard pattern (e.g., *.sec), matching �les are considered in the order
determined by system locale.

The rules from one con�guration �le are applied in the same order as they
appear in this �le:

� if a rule does not match the input event, the next rule is tried,

� if a rule matches the input event, the value of rule's continue keyword
determines what rule is tried next. By default, the following rules in the
same con�guration �le are not tried.

For example, consider the con�guration �les ltr1.sec and ltr2.sec from List-
ings 3 and 4 that will be used in the remainder of this section for explaining the
rule application order.

Listing 3: The content of ltr1.sec

type=Single

ptype=SubStr

pattern=AAA

rem=after this rule has matched , don 't consider following \

rules in this configuration file , since 'continue ' \

defaults to 'DontCont '

desc=Three A characters

action=write - three A characters were observed

type=Single

ptype=SubStr

pattern=BBB

rem=after this rule has matched , don 't consider any other \

rules (in other words , search for matching rules ends \

for all configuration files)

continue=EndMatch

desc=Three B characters

action=write - three B characters were observed

The rules in Listings 3 and 4 feature patterns of type SubStr. The SubStr
pattern is a substring that is searched in the input event, and the pattern
matches if and only if the substring is found. Note that for the sake of matching
speed, the SubStr pattern does not set any match variables.

For example, suppose the user provides the following input line:

AAABBBCCCDDDEEE

As mentioned above, SEC �rst applies rules from ltr1.sec and then rules
from ltr2.sec. The �rst rule in ltr1.sec matches, and due to the default setting
of continue keyword (i.e., continue=DontCont) the following rules are not con-
sidered in ltr1.sec. Also, the �rst rule in ltr2.sec matches, and continue=GoTo
lastRule setting directs the further processing to the location de�ned by the
lastRule label in ltr2.sec (i.e., the third rule in ltr2.sec). The third rule also
matches, and all matching rules in ltr1.sec and ltr2.sec produce the following
output:

three A characters were observed

three C characters were observed

three E characters were observed

9

Listing 4: The content of ltr2.sec

type=Single

ptype=SubStr

pattern=CCC

rem=after this rule has matched , continue from last rule \

in this configuration file

continue=GoTo lastRule

desc=Three C characters

action=write - three C characters were observed

type=Single

ptype=SubStr

pattern=DDD

rem=after this rule has matched , continue from next rule \

in this configuration file

continue=TakeNext

desc=Three D characters

action=write - three D characters were observed

label=lastRule

type=Single

ptype=SubStr

pattern=EEE

desc=Three E characters

action=write - three E characters were observed

Suppose the user provides the following input line:

BBBCCCDDDEEE

In this case, the �rst rule in ltr1.sec does not match, and therefore the follow-
ing rule is tried. The second rule in ltr1.sec matches, and continue=EndMatch
setting terminates all further search for matching rules (i.e., rules from ltr2.sec
will not be tried). As a result, the following output is produced:

three B characters were observed

Finally, suppose the user provides the following input line:

DDDEEE

In this case, both the �rst and second rule in ltr1.sec are tried but do not
match. The processing continues with rules from ltr2.sec, with the �rst rule not
producing the match. However, the second rule in ltr2.sec matches, and due to
continue=TakeNext setting the processing will continue with the next rule. The
third rule in ltr2.sec also matches, and the following output is produced:

three D characters were observed

three E characters were observed

Suppose the user changes the order of --conf options on the example SEC
command line used in this section, for example:

sec --conf=ltr2.sec --conf=ltr1.sec --input=-

10

Obviously, that will also change the application order of rules (rules from
ltr2.sec would be applied �rst now). For establishing a rule application or-
der that is independent from the order of command line options, hierarchically
organized rulesets can be used that will be discussed in Section 6.1.

2.5 Commonly used SEC actions

We have already discussed the write action, and this section provides an overview
of other commonly used actions that are employed by rule examples in this tu-
torial.

The shellcmd action forks a process for running a user-de�ned command
line. If the command line contains shell metacharacters, it is parsed by shell.
Listing 5 provides a rule example that matches SSH login failures, setting the
$1 match variable to the IP address of the SSH client host.

Listing 5: An action list with write and shellcmd actions

An example event matched by this rule:

sshd [2181]: Failed password for bob from 10.1.1.1 port 55529 ssh2

type=Single

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for \S+ from ([\d.]+) port \d+ ssh2

desc=login failure

action=write /var/log/ssh -failures.log SSH login failure from $1; \

shellcmd echo 'SSH login failure from $1 ' | mail root@localhost

The action keyword of the rule de�nes an action list consisting of two actions
� write and shellcmd. If the action list contains more than one action, the action
de�nitions must be separated by semicolons.

The write action from Listing 5 writes the string SSH login failure from
〈ipaddress〉 to /var/log/ssh-failures.log, whereas the shellcmd action forks a pro-
cess for executing the following command line:

echo 'SSH login failure from <ipaddress>' | mail root@localhost

This command line sends the string SSH login failure from 〈ipaddress〉 to
root@localhost via email. Also, since this command line contains the shell
metacharacter |, the command line is parsed by shell.

Note that whenever SEC forks a process for executing a command line, the
execution is asynchronous � SEC does not wait for the command to complete,
but continues immediately after the new process has been forked.

The asynchronous nature of command line execution might create unex-
pected issues when multiple shellcmd actions are used in the same action list.
For example, consider the following action list:

shellcmd cat /tmp/report | mail root; shellcmd rm -f /tmp/report

Due to asynchronous execution, the rm command might remove the �le
/tmp/report before the cat command has a chance to open it. For addressing
this issue, commands can be arranged into a shell list, making sure that the shell
is not executing the second element of the list before the �rst element completes:

11

cat /tmp/report | mail root; rm -f /tmp/report

However, the use of the above shell list introduces another issue � in the
list, commands are separated by a semicolon which is also used for separating
actions in SEC rule de�nitions. For indicating that the semicolon of the shell
list is part of the command line, the entire command line must be enclosed in
parentheses, and Listing 6 provides a relevant example.

Listing 6: A shellcmd action with a shell list

type=Single

ptype=SubStr

pattern=SEND REPORTS

desc=send reports

action=shellcmd (cat /tmp/report | mail root; rm -f /tmp/report); \

write - report sent!

Apart from the shellcmd action, another commonly used action for executing
command lines is pipe. Listing 7 illustrates a more e�cient implementation of
the rule from Listing 5 that employs the pipe action.

Listing 7: An action list with write and pipe actions

type=Single

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for \S+ from ([\d.]+) port \d+ ssh2

desc=login failure

action=write /var/log/ssh -failures.log SSH login failure from $1; \

pipe 'SSH login failure from $1 ' mail root@localhost

The pipe action forks a process for asynchronous execution of a command
line, writing a user-de�ned string to the standard input of the executed com-
mand. By convention, the user-de�ned string must appear between apostro-
phes in order to disambiguate it from the following command line. As with
the shellcmd action, the command line is parsed by shell if it contains shell
metacharacters.

In some cases (most notably for security reasons), it is necessary to disable
shell parsing for the executed command lines. For that purpose, SEC provides
cmdexec and pipeexec actions that are similar to shellcmd and pipe actions
respectively, but they execute command lines by calling execvp(3) without any
shell parsing.

The logonly action writes a user-de�ned message to SEC log �le, with the
level of the message being 4 (that level corresponds to informational messages).
For example, suppose SEC was started with the following commandline:

sec --conf=/etc/sec/write-to-file.sec --input=/var/log/secure

--detach --log=/var/log/sec.log --pid=/run/sec.pid

In the case of the above command line, the following action writes the mes-
sage This is a test message to SEC log �le /var/log/sec.log :

logonly This is a test message

Finally, the none action denotes no-op.

12

3 Event correlation

This section provides an introduction to event correlation with SEC, discussing
some commonly used rule types for that purpose � the SingleWithThreshold,
EventGroup, and PairWithWindow rule.

In the remainder of this tutorial, we assume that the timestamps of example
events represent the time SEC observes these events. For example, consider
SSH login failure events in Listing 8 that originate from /var/log/secure. It
is assumed that when SEC is receiving input events from /var/log/secure, it
observes 5 events from Listing 8 on October 17 at 12:00:01, 12:01:09, 12:02:16,
12:03:43, and 12:04:56 according to local system clock.

Listing 8: Example sshd login failure events from /var/log/secure
Oct 17 12:00:01 host2 sshd [2181]: Failed password for bob from 10.1.1.1 port 55529 ssh2

Oct 17 12:01:09 host2 sshd [2183]: Failed password for jim from 10.6.1.9 port 55530 ssh2

Oct 17 12:02:16 host2 sshd [2181]: Failed password for bob from 10.1.1.1 port 55534 ssh2

Oct 17 12:03:43 host2 sshd [2187]: Failed password for jim from 10.1.1.1 port 55538 ssh2

Oct 17 12:04:56 host2 sshd [2189]: Failed password for bob from 10.1.1.1 port 55543 ssh2

3.1 SingleWithThreshold rule and introduction to event

correlation operations

Suppose we have to address the following event correlation problem � when 3
SSH login failure events (like the events from Listing 8) are observed during 300
seconds (5 minutes), a warning email must be sent to the system administrator.
This raises the following question: how exactly should the event counting be
implemented?

For example, if only one event counter is maintained for all SSH login failures
and SEC observes the events from Listing 8, the appearance of the third event
at 12:02:16 should trigger the warning email.

On the other hand, if separate event counters are maintained for SSH client
hosts, the third event for IP address 10.1.1.1 at 12:03:43 should trigger a warning
email with a relevant message (e.g., Too many SSH login failures from 10.1.1.1).

Finally, if a separate event counter is maintained for each combination of
user name and SSH client IP address, the events from Listing 8 contain three
such combinations:

� 〈bob, 10.1.1.1〉 � observed 3 times at 12:00:01, 12:02:16, and 12:04:56

� 〈jim, 10.6.1.9〉 � observed once at 12:01:09

� 〈jim, 10.1.1.1〉 � observed once at 12:03:43

Therefore, the third event for the combination 〈bob, 10.1.1.1〉 at 12:04:56
should trigger a warning email with a relevant message (e.g., Too many SSH
login failures for user bob from 10.1.1.1).

Listing 9 provides an example SingleWithThreshold rule that implements the
event correlation scheme described above, maintaining a separate event counter
for each user name and IP address combination.

The thresh and window keywords of the SingleWithThreshold rule de�ne
the counting threshold and the size of the event correlation window in seconds.

13

Listing 9: The content of /etc/sec/sshd.sec

type=SingleWithThreshold

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for (\S+) from ([\d.]+) port \d+ ssh2

desc=user $1 ip $2

action=pipe 'Too many SSH login failures for user $1 from $2 ' \

mail root@localhost

thresh =3

window =300

The desc keyword de�nes the operation description string that determines what
event correlation operations are started by the rule and what events are pro-
cessed by these operations.

Whenever an event is matched by the rule that de�nes the correlation of
several events over time, the event is processed as follows:

� after the event has matched the rule, the value of the desc keyword (op-
eration description string) is found,

� event correlation operation ID is calculated that is a tuple 〈con�guration
�le name, rule number in the con�guration �le, operation description
string〉. Note that the �rst rule in the con�guration �le has the num-
ber 0, the second rule has the number 1, etc. If there is no operation with
the given ID, the operation is started for this ID,

� the event is handed over for the event correlation operation with the cal-
culated ID for further processing.

For example, suppose the rule from Listing 9 processes the events from
Listing 8. The �rst event at 12:00:01 triggers the creation of the event counting
operation with the ID 〈/etc/sec/sshd.sec, 0, user bob ip 10.1.1.1〉. Also, the
�rst event is handed over to the operation for processing, and as a result, the
operation sets its event counter to 1.

The events at 12:02:16 and 12:04:56 are also processed by this operation,
incrementing the event counter by 1 in both cases. Since the counter becomes
equal to 3 after the last event at 12:04:56 has been processed, the operation
executes the pipe action, sending the warning message Too many SSH login
failures for user bob from 10.1.1.1 to root@localhost. After that, the operation
continues to run until 12:05:01 (i.e., it runs for 300 seconds since its creation at
12:00:01).

Also, the events at 12:01:09 and 12:03:43 trigger the creation of event count-
ing operations with the ID 〈/etc/sec/sshd.sec, 0, user jim ip 10.6.1.9〉 and
〈/etc/sec/sshd.sec, 0, user jim ip 10.1.1.1〉. Since both of those operations will
only process one event, their event counters will remain set to 1.

This example illustrates several key points about event correlation rules and
event correlation operations:

� one rule can start many event correlation operations that run simultane-
ously, whereas each operation has only one parent rule,

� the event correlation operation inherits its type from the parent rule (e.g.,
SingleWithThreshold rule starts SingleWithThreshold operations),

14

Figure 3: Example event correlation operations from SEC dump �le

� the value of the rule's desc keyword determines the number of event cor-
relation operations started by the rule and how the rule divides matching
events between operations,

� the presence of the con�guration �le name and rule number in the ID of
the event correlation operation ensures that operations started by di�erent
rules can never have overlapping IDs,

� rules are static entities de�ned in con�guration �les, whereas event corre-
lation operations are dynamic entities that exist in memory. As discussed
in Section 2.3, a dump �le with event correlation state is generated when
the USR1 signal is sent to SEC process. Among other data, this dump
�le contains detailed information about the state of all currently running
event correlation operations. For example, Figure 3 displays information
about simultaneously running event correlation operations started by the
rule from Listing 9.

15

3.2 Variable substitution for event correlation operations

Please note that as a general rule, match variables are substituted with their
values when the event correlation operation is initialized, and these values are
used throughout the lifetime of the operation (exceptions from that rule are
described in SEC o�cial documentation). For example, consider the rule from
Listing 10.

Listing 10: The content of /etc/sec/sshd2.sec

type=SingleWithThreshold

ptype=RegExp

pattern =^(.{15}) \S+ sshd \[\d+\]: Failed .+ for (\S+) from ([\d.]+) port \d+ ssh2

desc=user $2 ip $3

action=pipe '%t: Too many SSH login failures for user $2 from $3 (first event $1)' \

mail root@localhost

thresh =3

window =300

Note that the regular expression pattern of this rule sets the $1 match vari-
able to the 15-character timestamp from the matching event. Although the
events processed by the same operation share the same user name and SSH
client IP address, such events can have di�erent timestamps.

Since match variables are substituted when the operation is created, the $1
variable will get its value from the �rst event that is processed by the operation.
In contrast, action list variables are substituted with their values when the action
list is executed. The builtin %t action list variable in Listing 10 will thus re�ect
the time when the pipe action is executed.

Therefore, when the rule from Listing 10 processes the events from Listing
8, the event correlation operation with the ID 〈/etc/sec/sshd2.sec, 0, user bob
ip 10.1.1.1〉 sends the following email message to root@localhost at 12:04:56:

Mon Oct 17 12:04:56 2022: Too many SSH login failures for user bob from
10.1.1.1 (�rst event Oct 17 12:00:01)

3.3 SingleWithThreshold operations and sliding window

based event correlation

In order to understand the working principle of SingleWithThreshold event cor-
relation operations, let's consider the rule from Listing 9 and 8 example events
from Figure 4. When these 8 events are processed by the rule, the rule starts
an event correlation operation with the ID 〈/etc/sec/sshd.sec, 0, user bob ip
10.1.1.1〉, and all events are processed by this operation.

The �rst event at 12:39:01 starts the operation, setting the beginning of the
300 second (5 minute) event correlation window to 12:39:01. In other words, the
event correlation windows covers the time frame 12:39:01�12:44:01 (see Figure
4). Also, after processing the �rst event, the event counter has the value of 1,
and the second event at 12:43:46 increments the counter to 2.

At 12:44:02, the event correlation window expires, since the earliest event
in the window (that re�ects the beginning of the window) has occurred more
than 300 seconds ago. Since the event counter has the value of 2, the threshold
condition has not been met, and thus the rule action can not be executed.

16

Oct 17 12:39:01 host2 sshd[2181]: Failed password for bob from 10.1.1.1 port 55529 ssh2
Oct 17 12:43:46 host2 sshd[2181]: Failed password for bob from 10.1.1.1 port 55534 ssh2
Oct 17 12:44:52 host2 sshd[2347]: Failed password for bob from 10.1.1.1 port 55614 ssh2
Oct 17 12:44:53 host2 sshd[2347]: Failed password for bob from 10.1.1.1 port 55614 ssh2
Oct 17 12:45:54 host2 sshd[2347]: Failed password for bob from 10.1.1.1 port 55614 ssh2
Oct 17 12:46:27 host2 sshd[2349]: Failed password for bob from 10.1.1.1 port 55618 ssh2
Oct 17 12:46:58 host2 sshd[2349]: Failed password for bob from 10.1.1.1 port 55618 ssh2
Oct 17 12:47:39 host2 sshd[2349]: Failed password for bob from 10.1.1.1 port 55618 ssh2

12:39:01 12:44:01

12:48:4612:43:46

initial window

window after sliding

action executed at 12:44:53

these events are consumed silently

this event is
dropped during
window sliding

Figure 4: SingleWithThreshold event correlation operation

At that point, SEC could simply terminate the operation, but if that is
done, SEC would miss event patterns that combine already observed events
and potential future events. For example, see the pattern of 3 green events
from Figure 4 that �t into the window of 300 seconds (the �rst green event has
already been observed and the other two are going to happen in the near future
after 12:44:02).

For facilitating the detection of such event patterns, the SingleWithThreshold
operation employs a sliding event correlation window during event correlation
process. With this approach, events that are older than the length of the window
are dropped, and the beginning of the window is moved to the occurrence time
of the earliest remaining event.

Note that sliding windows are used by all SEC event correlation operations
that implement event counting � such operations are started by SingleWith-
Threshold, SingleWith2Thresholds, and EventGroup rules.

In the case of our example, the red event at 12:39:01 is dropped during win-
dow sliding at 12:44:02, since that event is older than 300 seconds (see Figure
4). Also, the beginning of the window is moved to 12:43:46 � that is the oc-
currence time of the earliest remaining event the operation has processed. Note
that in the case of no remaining events, the operation terminates. After window
sliding, the window will cover the time frame 12:43:46�12:48:46 (see Figure 4).
Since one event was dropped during window sliding, the event counter of the
operation is decremented to 1 (that re�ects the fact that one event has remained
in the window after sliding).

After window sliding at 12:44:02, the operation will see two events at 12:44:52
and 12:44:53 that increment the event counter to 3. Since the threshold condi-
tion has been met now (the operation has observed 3 events in 300 seconds, with
relevant events having the green color in Figure 4), the operation will execute
the con�gured pipe action.

Note that after the action has been executed, the SingleWithThreshold op-
eration will not terminate immediately, but it will continue to exist until the

17

end of the event correlation window. Also, all events observed during this time
are consumed silently without executing the action again (see the blue events
in Figure 4).

At 12:48:47, the event correlation window expires and the operation ter-
minates. Note that if an event matches the rule from Listing 9 at 12:48:47,
producing the same operation ID as the expired operation has, the event is pro-
cessed by a new operation that is started immediately after the expired one has
been destroyed.

If one wants the operation to terminate immediately after it has sent the
warning email with the pipe action, the reset action can be utilized as illustrated
by Listing 11.

Listing 11: The content of /etc/sec/sshd-reset.sec

type=SingleWithThreshold

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for (\S+) from ([\d.]+) port \d+ ssh2

desc=user $1 ip $2

action=pipe 'Too many SSH login failures for user $1 from $2 ' \

mail root@localhost; reset 0

thresh =3

window =300

The reset action terminates an event correlation operation started by some
rule from the same con�guration �le (see the SEC o�cial documentation for
more details), and reset 0 terminates the calling operation itself.

3.4 EventGroup rule

In previous sections, we discussed several SingleWithThreshold rule examples
that were designed to track the count of events of speci�c type (e.g., SSH login
failures). But what about scenarios that involve counting events of di�erent
types in one event correlation window? For example, consider SSH login failure
events and HTTP access log events from Listing 12.

Listing 12: Example sshd login failure events from /var/log/secure and httpd
GET events from /var/log/httpd/access_log
10.1.1.1 - - [08/ Nov /2022:13:13:05 +0200] "GET /∼bob HTTP /1.1" 404 196 "-" "curl /7.68.0"

Nov 8 13:13:20 host sshd [1551]: Failed password for bob from 10.1.1.1 port 50280 ssh2

Nov 8 13:13:25 host sshd [1551]: Failed password for bob from 10.1.1.1 port 50280 ssh2

Nov 8 13:13:29 host sshd [1551]: Failed password for bob from 10.1.1.1 port 50280 ssh2

Nov 8 13:13:36 host sshd [1553]: Failed password for bob from 10.1.1.1 port 41274 ssh2

10.1.1.1 - - [08/ Nov /2022:13:13:39 +0200] "GET /∼bob/test.html HTTP /1.1" 404 196 "-" "curl /7.68.0"

Nov 8 13:13:52 host sshd [1553]: Failed password for bob from 10.1.1.1 port 41274 ssh2

Nov 8 13:13:59 host sshd [1553]: Failed password for bob from 10.1.1.1 port 41274 ssh2

Also, suppose that we need to issue a warning email when the following
events are observed within 60 seconds for the same 〈user name, IP address of
the remote host〉 combination:

� 2 SSH login failure events for the user name from the remote host,

18

� 2 HTTP GET events to user's personal web page from the remote host,
so that the HTTP status code is 404.

The EventGroup rule has been designed for tackling such tasks, and it allows
one to con�gure any number of patterns for matching di�erent event types. With
each pattern, a di�erent threshold for the number of events can be speci�ed. The
number of patterns is provided with the rule type � for example, EventGroup
denotes a rule with one event pattern, EventGroup2 a rule with two event
patterns, EventGroup3 a rule with three event patterns, etc.2

Listing 13 provides an example EventGroup2 rule for addressing the event
correlation task described above. In the rule de�nition, the �rst event pattern
and the threshold are de�ned with ptype, pattern, and thresh keywords, while
the second event pattern and relevant event threshold are de�ned with ptype2,
pattern2, and thresh2 keywords.

Listing 13: The content of /etc/sec/sshd-httpd.sec

type=EventGroup2

ptype=RegExp

pattern=sshd \[\d+\]: Failed password for (?<user >\S+) from (?<ip >[\d.]+) port \d+ ssh2

thresh =2

ptype2=RegExp

pattern2 =^(?<ip >[\d.]+) - - \[.+?\] "GET /∼(?<user >[^\s/]+)\S* HTTP /[\d.]+" 404

thresh2 =2

desc=user $+{user} ip $+{ip}

action=pipe 'SSH and web probing for user $+{user} from $+{ip}' mail root@localhost

window =60

Note that for extracting the user name and IP address from SSH login failure
and HTTP GET events, traditional $1 and $2 match variables can no longer
be used, since their meaning depends on the event type (e.g., $1 represents the
user name for SSH login failure events, and the IP address for HTTP GET
events). For addressing this issue, named capture groups (?<user>...) and
(?<ip>...) have been used in the EventGroup2 rule from Listing 13 that set
the match variables $+{user} and $+{ip}.

Since the value of the rule's desc keyword contains both match variables, the
rule starts a separate event correlation operation for each combination of the user
name and IP address of the remote host. According to the window keyword, the
event correlation window of 60 seconds is used. Similarly to SingleWithThreshold
operations, the event correlation window is sliding.

When the rule from Listing 13 processes the event from Listing 12, event cor-
relation operation with the ID 〈/etc/sec/sshd-httpd.sec, 0, user bob ip 10.1.1.1〉
is created when the �rst event is observed at 13:13:05, and the event counter
for HTTP GET events is set to 1.

After SSH login failure events at 13:13:20 and 13:13:25 have been observed,
the event counter for SSH login failure events has the value of 2. Therefore, the
threshold condition de�ned with the thresh keyword has been met, but since
this is not the case for the second threshold condition given with the thresh2

2At �rst glance, it might seem that the EventGroup rule makes little sense, because it
has only one pattern like the SingleWithThreshold rule. In fact, as described in SEC o�cial
documentation, EventGroup greatly extends the event correlation capabilities of SingleWith-

Threshold, and one relevant example is provided in Section 6.4.

19

keyword, the warning email is not sent. For the same reason, the operation
does not issue the email when two additional SSH login failure events appear
at 13:13:29 and 13:13:36 (these events will increment the counter for SSH login
failure events to 4).

When the second HTTP GET event at 13:13:39 arrives, the counter for
HTTP GET events is incremented to 2, and now both threshold conditions have
been met. Therefore, the operation will send an email warning to root@localhost
with the following text: SSH and web probing for user bob from 10.1.1.1. After
sending the email, the operation will continue to run until the end of the event
correlation window at 13:14:05, consuming the events at 13:13:52 and 13:13:59
silently. At 13:14:06, the operation is terminated due to expiration of the event
correlation window.

3.5 EventGroup operations with multiple actions

Previously presented SingleWithThreshold and EventGroup rule examples have
involved the execution of the action once by the event correlation operation �
the execution has taken place when all threshold conditions have been met for
the �rst time, and after that, further events have been silently consumed by the
operation without taking any action.

The EventGroup rule also allows for con�guring a di�erent behavior � each
time the operation observes an event, it checks the threshold conditions, and
in the case they are all satis�ed, a con�gured action list is executed. Also, the
operation continues its work as long as possible, sliding its event correlation
window forward even if the action list has already been executed in the past.
This behavior can be con�gured by setting the rule's multact keyword to yes,
and Listing 14 provides a relevant rule example. Also, Figure 5 illustrates the
work of the event correlation operation started by this rule.

Listing 14: The content of /etc/sec/sshd-httpd-multact.sec

type=EventGroup2

ptype=RegExp

pattern=sshd \[\d+\]: Failed password for (?<user >\S+) from (?<ip >[\d.]+) port \d+ ssh2

thresh =2

ptype2=RegExp

pattern2 =^(?<ip >[\d.]+) - - \[.+?\] "GET /∼(?<user >[^\s/]+)\S* HTTP /[\d.]+" 404

thresh2 =2

desc=user $+{user} ip $+{ip}

action=pipe 'SSH and web probing for user $+{user} from $+{ip}' mail root@localhost

multact=yes

window =60

As can be seen from Figure 5, the operation executes the pipe action at
13:13:39 for the �rst time after the second HTTP GET event has been observed.
By that time, 4 SSH login failure events have been seen already. The action
is also executed at 13:13:52 and 13:13:59, since both threshold conditions are
satis�ed.

At 13:14:06, the event correlation window expires, and the HTTP GET event
from 13:13:05 is dropped during window sliding. As a result, just one HTTP
GET event will remain in the event correlation window, and the threshold con-
dition given with the thresh2 keyword is no longer met. For this reason, the

20

10.1.1.1 - - [08/Nov/2022:13:13:05 +0200] "GET /~bob HTTP/1.1" 404 196 "-" "curl/7.68.0"
Nov 8 13:13:20 host sshd[1551]: Failed password for bob from 10.1.1.1 port 50280 ssh2
Nov 8 13:13:25 host sshd[1551]: Failed password for bob from 10.1.1.1 port 50280 ssh2
Nov 8 13:13:29 host sshd[1551]: Failed password for bob from 10.1.1.1 port 50280 ssh2
Nov 8 13:13:36 host sshd[1553]: Failed password for bob from 10.1.1.1 port 41274 ssh2
10.1.1.1 - - [08/Nov/2022:13:13:39 +0200] "GET /~bob/test.html HTTP/1.1" 404 196 "-" "curl/7.68.0"
Nov 8 13:13:52 host sshd[1553]: Failed password for bob from 10.1.1.1 port 41274 ssh2
Nov 8 13:13:59 host sshd[1553]: Failed password for bob from 10.1.1.1 port 41274 ssh2
Nov 8 13:14:10 host sshd[1560]: Failed password for bob from 10.1.1.1 port 51740 ssh2
10.1.1.1 - - [08/Nov/2022:13:14:15 +0200] "GET /~bob HTTP/1.1" 404 196 "-" "curl/7.68.0"

13:13:05 13:14:05

13:14:2013:13:20

initial window

window after sliding

actions executed at 13:13:39, 13:13:52 and 13:13:59

this event is
dropped during
window sliding

action executed at 13:14:15

action not executed at 13:14:10

Figure 5: EventGroup2 event correlation operation with multiple actions

action is not executed when the SSH login failure event arrives at 13:14:10. How-
ever, the arrival of the HTTP GET event at 13:14:15 will increment the event
counter of HTTP GET events to 2, and as a result, both threshold conditions
become satis�ed again. Therefore, the event correlation operation executes the
pipe action again at 13:14:15.

3.6 EventGroup rule for detecting ordered event sequences

By default, the EventGroup rule does not impose any order for matching events
of di�erent types. For example, the rules from Listings 13 and 14 allow the
expected 2 SSH login failure events and 2 HTTP GET events to arrive in any
order.

However, in some cases it is necessary to detect event sequences where
events have a speci�c order. The EventGroup rule supports this functional-
ity and for illustrating it, we will a use case that involves processing iptables
�rewall messages about blocked packets. Listing 15 depicts examples of such
messages that describe denied access attempts from remote host 192.168.56.1 to
ports 23/tcp (TELNET service) and 25/tcp (SMTP service) at the local system
(192.168.56.116).

Listing 15: Linux iptables messages about blocked packets from /var/log/mes-
sages
Nov 10 16:04:44 localhost kernel: iptables: IN=enp0s8 OUT=

MAC =08:00:27:1c:bd:21:0a:00:27:00:00:00:08:00 SRC =192.168.56.1

DST =192.168.56.116 LEN =60 TOS=0x00 PREC=0x00 TTL =64 ID =47027 DF

PROTO=TCP SPT =57302 DPT=23 WINDOW =64240 RES=0x00 SYN URGP=0

Nov 10 16:04:47 localhost kernel: iptables: IN=enp0s8 OUT=

MAC =08:00:27:1c:bd:21:0a:00:27:00:00:00:08:00 SRC =192.168.56.1

DST =192.168.56.116 LEN =60 TOS=0x00 PREC=0x00 TTL =64 ID =65333 DF

PROTO=TCP SPT =49118 DPT=25 WINDOW =64240 RES=0x00 SYN URGP=0

21

Suppose we need to address the following event correlation task � a warning
email needs to be issued if we observe an event sequence from Listing 15 (i.e.,
access attempt to port 23/tcp that is immediately followed by access attempt
to port 25/tcp) 2 times from the same remote host within 60 seconds. Listing
16 provides an example rule for addressing this problem.

Listing 16: The content of /etc/sec/telnet-smtp-sequences.sec

This rule starts an event correlation operation for iptables

blocked packet event for TELNET/SMTP service from an IP address.

If from the same IP address an iptables event for port 23/ tcp is

immediately followed by event for port 25/tcp , and this sequence

of two events is observed two times within 60 seconds , an e-mail

alert is sent to local root user.

type=EventGroup2

ptype=RegExp

pattern=kernel: iptables :.* SRC =([\d.]+) .* PROTO=TCP .* DPT =23\b

thresh =2

ptype2=RegExp

pattern2=kernel: iptables :.* SRC =([\d.]+) .* PROTO=TCP .* DPT =25\b

thresh2 =2

desc=Two TELNET ->SMTP port probe sequences from host $1

egptype=RegExp

egpattern =1 2.*1 2

action=pipe '%s' mail root@localhost

window =60

Note that the rule from Listing 16 does not employ a minimalistic operation
description string (set with the desc keyword) like the previous examples from
this tutorial did, but a longer human-readable value has been con�gured. The
operation description string can be accessed in action lists with the %s builtin
action list variable, and the pipe action from Listing 16 uses the operation
description string for the text of the email message.

In addition to numeric threshold conditions set by thresh and thresh2 key-
words, the rule from Listing 16 has additional keywords egpattern and egptype
that de�ne the event group pattern and its type respectively. In the case of this
rule, the event group pattern is the following regular expression:

1 2.*1 2

The event group pattern is evaluated when all numeric threshold conditions
have been met, and it is de�ning additional restrictions for the event sequence
that the event correlation operation expects to observe. When event group
pattern is evaluated, it is matched against the event group string that represents
the sequence of events in the event correlation window. Note that if the event
correlation window slides, dropped events will no longer be represented in the
event group string.

By default, each event in the event group string is represented by a number
that corresponds to the number of the matching pattern. For example, event
matched by regular expression de�ned by pattern2 keyword is represented by
number 2. Also, the numbers appear in the event group string in the same order
as matching events have been observed, and the numbers are separated by space
characters.

22

Events: Event group strings:

Jun 22 10:07:01 ... SRC=10.1.1.1 ... PROTO=TCP ... DPT=23 … 1
Jun 22 10:07:11 ... SRC=10.1.1.1 ... PROTO=TCP ... DPT=25 … 1 2
Jun 22 10:07:24 ... SRC=10.1.1.1 ... PROTO=TCP ... DPT=25 … 1 2 2
Jun 22 10:07:33 ... SRC=10.1.1.1 ... PROTO=TCP ... DPT=23 … 1 2 2 1
Jun 22 10:07:55 ... SRC=10.1.1.1 ... PROTO=TCP ... DPT=25 … 1 2 2 1 2

10:07:01 10:08:01

1

action not executed at 10:07:33, since
1 2 2 1 does not match 1 2.*1 2

action executed at 10:07:55, since
1 2 2 1 2 matches 1 2.*1 2

1 2 1 2 2 1 2 2 1 1 2 2 1 2

Figure 6: EventGroup2 event correlation operation with event group pattern

For understanding how the event group pattern is used by event correlation
operations, consider how example events from Figure 6 are processed by the
rule from Listing 16. On the appearance of the �rst event at 10:07:01, the rule
starts an event correlation operation for remote host 10.1.1.1.

When the fourth event at 10:07:33 arrives, both threshold conditions have
been satis�ed, and therefore the event group string will be matched with the
event group pattern. Since there is no match, the pipe action is not executed.

At 10:07:55, the event correlation operation observes the �fth event, and this
time the event group string matches the event group pattern. Therefore, the
pipe action is executed which sends the email message Two TELNET->SMTP
port probe sequences from host 10.1.1.1 to root@localhost.

As this example illustrates, event group patterns allow for matching speci�c
event sequences where events have a particular order. Apart from regular ex-
pressions, more generic and powerful PerlFunc patterns can be used as event
group patterns, and we will explore that topic in Section 6.4.

Also, the EventGroup rule has several other advanced features that did not
�t into this tutorial due to space limitations, and a detailed description of these
features can be found in SEC o�cial documentation.

3.7 PairWithWindow rule

A rule example from Listing 9 in Section 3.1 generates a warning email if 3 SSH
login failure events have been observed for the same combination of user name
and SSH client IP address during 5 minutes. However, imagine the following
situation � a user who has just returned from a longer vacation does not imme-
diately recollect his/her password and will thus try a number of passwords in a
short time frame, creating enough events for the rule from Listing 9 to trigger
the warning email.

One way for addressing this problem is to memorize the time when the �rst
login failure event for a user and a client host was observed, and then expect

23

this user to successfully log in from the same client host within a reasonable
amount of time (e.g., 5 minutes). If the expected successful login event does not
arrive within prede�ned time frame, a warning email is issued.

For example, consider example events from Listing 17. After the user alice
has failed to log in from host 10.1.1.1 at 11:35:47, we are expecting this user to
log in from host 10.1.1.1 by 11:40:47 the latest (i.e., during 5 minutes after the
login failure). However, the expected event will not arrive, and there is only
a second unsuccessful login attempt at 11:35:59. Therefore, a warning email
should be issued for user alice and client host 10.1.1.1.

Listing 17: Example sshd login failure events from /var/log/secure
Nov 11 11:35:47 host sshd [1504]: Failed password for alice from 10.1.1.1 port 50406 ssh2

Nov 11 11:35:59 host sshd [1504]: Failed password for alice from 10.1.1.1 port 50406 ssh2

Nov 11 11:36:00 host sshd [1506]: Failed password for bob from 10.1.1.2 port 58942 ssh2

Nov 11 11:36:06 host sshd [1506]: Failed password for bob from 10.1.1.2 port 58942 ssh2

Nov 11 11:40:30 host sshd [1508]: Accepted password for bob from 10.1.1.2 port 36139 ssh2

In contrast, although user bob fails to log in from host 10.1.1.2 at 11:36:00,
his third login attempt from the same client host 10.1.1.2 is successful at 11:40:30
(i.e., 4 minutes and 30 seconds after initial failure). In other words, we have
seen the expected successful login event within the 5 minute time frame, and
thus no warning email should be issued.

The PairWithWindow rule allows to address such event correlation tasks �
it starts event correlation operations that expect the arrival of a speci�c event
during some time frame. If an operation does not observe the expected event, it
executes an action list and terminates. However, if the expected event arrives,
the operation executes another action list and terminates.

Listing 18 displays an example PairWithWindow rule for processing events
from Listing 17.

Listing 18: The content of /etc/sec/sshd-fail-success.sec

type=PairWithWindow

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for (\S+) from ([\d.]+) port \d+ ssh2

desc=User $1 did not manage to log in from $2 within 5 minutes

action=pipe '%s' mail root@localhost

ptype2=RegExp

pattern2=sshd \[\d+\]: Accepted .+ for $1 from $2 port \d+ ssh2

desc2=User %1 logged in from %2 after initial failure

action2=pipe '%s' logger -p authpriv.debug -t sec

window =300

For understanding how the rule from Listing 18 works, the following provides
a detailed description how each event from Listing 17 is processed:

� When the �rst event at 11:35:47 appears, the rule from Listing 18 matches
this event (the regular expression given with the pattern keyword matches).
Therefore, the rule starts the event correlation operation with the ID
〈/etc/sec/sshd-fail-success.sec, 0, User alice did not manage to log in from
10.1.1.1 within 5 minutes〉. According to the window keyword of the rule,
this event correlation operation will run for the following 300 seconds.

24

During this time frame, the operation will expect the event de�ned by
the pattern2 keyword of the rule. Note that pattern2 keyword de�nes
not a regular expression, but a regular expression template which contains
match variables $1 and $2. These match variables are substituted with
the values when the event correlation operation is created � for example,
$1 is substituted with alice.

Note that the substitution of $2 in the regular expression template in-
volves the following issue � $2 holds the IP address 10.1.1.1, but each dot
character (.) in the IP address is a regular expression atom that matches
any single character. For avoiding any side e�ects, all characters that
have a special meaning in regular expressions are masked during variable
substitution.

After substituting $1 and $2 with their values in the regular expression
template provided by pattern2 keyword, the resulting regular expression
is the following:

sshd\[\d+\]: Accepted .+ for alice from 10\.1\.1\.1 port \d+ ssh2

The operation with the ID 〈/etc/sec/sshd-fail-success.sec, 0, User alice
did not manage to log in from 10.1.1.1 within 5 minutes〉 will run for 300
seconds, expecting an event that matches this regular expression.

� When the second event at 11:35:59 appears, it is handed over for process-
ing to the previously created operation with the ID 〈/etc/sec/sshd-fail-
success.sec, 0, User alice did not manage to log in from 10.1.1.1 within 5
minutes〉. That operation will silently consume the event.

Since the operation will not observe successful login event for alice from
10.1.1.1 by 11:40:47, the event correlation window will expire at 11:40:48.
Note that unlike SingleWithThreshold and EventGroup operations, Pair-
WithWindow operations do not use sliding event correlation windows.
Therefore, the beginning of the window is not moved forward to 11:35:59
(time of the second login failure), but the event correlation operation ex-
ecutes the pipe action de�ned with action keyword.

The pipe action sends the following email message to root@localhost at
11:40:48: User alice did not manage to log in from 10.1.1.1 within 5 min-
utes. After sending the email with pipe action, the operation terminates.

� When the third event at 11:36:00 appears, the rule from Listing 18 starts
the event correlation operation with the ID 〈/etc/sec/sshd-fail-success.sec,
0, User bob did not manage to log in from 10.1.1.2 within 5 minutes〉.
This operation will run for 300 seconds, expecting an event that matches
the following regular expression:

sshd\[\d+\]: Accepted .+ for bob from 10\.1\.1\.2 port \d+ ssh2

� When the fourth event at 11:36:06 appears, it is silently consumed by the
operation with the ID 〈/etc/sec/sshd-fail-success.sec, 0, User bob did not
manage to log in from 10.1.1.2 within 5 minutes〉.

25

� When the �fth event at 11:40:30 appears, it is �rst matched against the
regular expression of the pattern keyword like all previous events. Unlike
the previous events, this event fails to match that expression. There-
fore, the rule forwards this event to all event correlation operations it has
started, so that these operations can match the event against their regular
expressions.

At 11:40:30, there are two such operations with the following IDs:

1. 〈/etc/sec/sshd-fail-success.sec, 0, User alice did not manage to log
in from 10.1.1.1 within 5 minutes〉 � this operation is expecting an
event matching the regular expression

sshd\[\d+\]: Accepted .+ for alice from 10\.1\.1\.1 port \d+ ssh2

2. 〈/etc/sec/sshd-fail-success.sec, 0, User bob did not manage to log in
from 10.1.1.2 within 5 minutes〉 � this operation is expecting an event
matching the regular expression

sshd\[\d+\]: Accepted .+ for bob from 10\.1\.1\.2 port \d+ ssh2

It is easy to see that from these two operations, only the regular expression
of the second operation produces a match. Therefore, the second operation
executes the pipe action de�ned with the action2 keyword of the rule.

Note that the rule de�nition from Listing 18 has the desc2 keyword that
is connected to action2 keyword. The purpose of desc2 is to set the %s
action list variable for the action list de�ned by action2 keyword. The
desc2 keyword is especially useful if you want to employ the same human-
readable message several times in a longer action list and want to refer
to that message by %s, and the operation description string set by desc
keyword is not appropriate for the message text.

� Before the pipe action de�ned by action2 keyword can be executed at
11:40:30, the match variables need to be substituted with their values for
desc2 and action2 keywords. However, this introduces the following issue
� the regular expression

sshd\[\d+\]: Accepted .+ for bob from 10\.1\.1\.2 port \d+ ssh2

that has just produced a match does not have any capture groups, and the
match variables $1 and $2 are thus unset. On the other hand, the regular
expression that matched an event at 11:36:00 (and started the current
event correlation operation) had $1 and $2 variables set to values that we
need. In order to refer to previous values of these match variables when
the operation was started, the %1 and %2 notation can be used.

Therefore, when the event correlation operation executes the pipe action
de�ned by the action2 �eld at 11:40:30, the following debug-level syslog
message will be produced with the logger tool: User bob logged in from
10.1.1.2 after initial failure.

After executing the pipe action at 11:40:30, the operation 〈/etc/sec/sshd-
fail-success.sec, 0, User bob did not manage to log in from 10.1.1.2 within
5 minutes〉 terminates immediately.

26

4 Contexts and pattern match caching

This section provides an introduction to contexts and a number of examples
on how to use them for event processing. Also, the concept of pattern match
caching is introduced in this section.

4.1 Introduction to contexts

Contexts are memory based objects that can be created and deleted from rules
and event correlation operations. Also, as we will see in Section 4.5, internal
contexts are created and deleted automatically by SEC. Note that contexts
have a global scope and are both visible and accessible from all rules and event
correlation operations. Contexts can be employed for several purposes, such as:

� representing the facts about past � for example, a context could represent
the fact that a warning email has already been sent to security adminis-
trator about some o�ending host,

� implementing timers that execute speci�c action lists after given number
of seconds � for example, after a �rewall rule has been created from SEC,
a context could be set up for removing that �rewall rule after 600 seconds,

� collecting events and submitting them together for external processing
� for example, a context could be used for collecting log events for a
suspicious IP address during 300 seconds, and all collected events could
be emailed to the security administrator for further review.

Figure 7 displays an example context data structure that resides in memory.
A context data structure has at least one name which is used for referring to the
context. If necessary, one can set up additional alias names with the alias action
� for example, the context in Figure 7 has two names MYCONT and MYCONT2
that can be used interchangeably and refer to the same context data structure.
Context names can also be removed with the unalias action, but when the last
remaining context name disappears, the context data structure is dropped from
memory (therefore, context names are similar to hard links of the UNIX �le
system). For explicitly destroying the context data structure with the removal
of all context names, delete action can be used.

Apart from one or more names, another important property of the context is
its lifetime. For example, the example context in Figure 7 has a lifetime of 3600
seconds (1 hour), and the context exists starting from its creation at 14:12:47
until 15:12:47 (November 10, 2022). If the lifetime is not speci�ed when the
context is created, the context will not expire and thus exist forever.

The action-on-expire is a property of the context that speci�es an action list
that is executed when the context expires. For example, the context in Figure
7 has the following action list con�gured for that purpose:

report MYCONT mail root@localhost

That action list is executed at 15:12:48 when more than 3600 seconds have
elapsed since the creation of the context. The report action from Figure 7 will
write all events from the event store of MYCONT to the standard input of the
following command line, keeping the order of events in the event store:

27

context
name:

MYCONT2

creation
time:

Nov 10
2022

14:12:47

lifetime:
3600

seconds

action-
on-

expire

event store:
Nov 10 14:33:11 srv3 sshd: ...
Nov 10 14:33:13 srv3 sshd: ...
Nov 10 14:35:22 srv1 kernel: ...
Nov 10 14:36:59 srv2 kernel: ...

report MYCONT mail root@localhost

Properties of the SEC context:
- context name(s)
- context creation time
- context lifetime (defaults to “infinite”)
- event store (is empty when the context is created)
- action-on-expiration (the action list that is executed when
 the context lifetime ends; defaults to “no action”)

context
name:

MYCONT

Figure 7: An example context

mail root@localhost

In other words, when the context MYCONT (also known as MYCONT2)
expires, the content of its event store is emailed to root@localhost, and then the
context is deleted.

The event store of the context is a memory based line bu�er that is empty
when the context is created. The add action can be used for appending lines
to the end of the event store, whereas the prepend action prepends new lines to
the beginning of the event store. Also, the pop and shift actions remove the last
and �rst line from the event store respectively. For other event store related
actions, please see SEC o�cial documentation.

4.2 Using contexts for rule activation and deactivation

Consider the rule from Listing 19 for detecting the cases when the same user
account is probed many times in a short time frame from the same remote host.

Listing 19: The content of /etc/sec/sshd-mass-scan.sec

type=SingleWithThreshold

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for (\S+) from ([\d.]+) port \d+ ssh2

desc=user $1 ip $2

action=pipe 'Too many SSH login failures for user $1 from $2 ' \

mail root@localhost

thresh =100

window =300

The rule from Listing 19 has one drawback � if the user account probing
lasts at the same rate for several hours, a warning email with the same message
will be sent after every 5 minutes to root@localhost.

28

To avoid repeated reporting of the same user name and IP address combi-
nation, this rule could be modi�ed as in Listing 20.

Listing 20: The content of /etc/sec/sshd-mass-scan2.sec

type=SingleWithThreshold

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for (\S+) from ([\d.]+) port \d+ ssh2

context =! USER_$1_HOST_$2_REPORTED

desc=user $1 ip $2

action=pipe 'Too many SSH login failures for user $1 from $2 ' \

mail root@localhost; create USER_$1_HOST_$2_REPORTED 3600

thresh =100

window =300

The action list de�ned by the action keyword contains an additional create
action that is executed after sending an email with pipe. The create action
creates a new context with the name given with the �rst parameter, whereas
the second parameter de�nes the lifetime of the context. Therefore, the cre-
ate action in Listing 20 creates the context USER_〈user name〉_HOST_〈IP
address〉_REPORTED with the lifetime of 3600 seconds (1 hour). For exam-
ple, after sending the warning email Too many SSH login failures for user alice
from 10.1.1.1, the context USER_alice_HOST_10.1.1.1_REPORTED is cre-
ated in order to represent the fact that the email has already been sent for this
user name and IP address combination.

Compared with the previous rule de�nition from Listing 19, the improved
version from Listing 20 features an additional context keyword that de�nes the
following Boolean expression:

!USER_$1_HOST_$2_REPORTED

In this expression, ! denotes logical NOT. The context name operand that
follows ! evaluates true if and only if the context with the given name exists.
Therefore, the above expression evaluates true if and only if the context with
the given name does not exist.

Since the Boolean expression given with the context keyword uses context
names as operands, it is called a context expression.

The above context expression is evaluated immediately after the regular
expression given with the pattern keyword has matched an event, substituting
$1 and $2 match variables with values from the regular expression match. The
rule matches an event if and only if the context expression evaluates true.

Therefore, con�guring such context expressions in rule de�nitions allows
for restricting the matches produced by rules. For example, after the context
USER_alice_HOST_10.1.1.1_REPORTED has been created, the rule from
Listing 20 will no longer match SSH login failure events for user alice from SSH
client host 10.1.1.1 during the following 3600 seconds.

Apart from the ! operator (logical NOT), you can use the following Boolean
operators in context expressions � && (logical AND) and || (logical OR). In
addition, you can use parentheses for grouping purposes. For example, the
following context expression evaluates true if and only if contexts A and B do
not exist and context C exists:

29

!(A || B) && C

Finally, if the rule has multiple event patterns (such as EventGroup and
PairWithWindow rules), the pattern and the corresponding context expression
must share the same number in the rule de�nition. For example, in order to
de�ne a context expression to be evaluated together with the pattern given
with the pattern2 keyword, this context expression must be provided with the
context2 keyword.

4.3 Using contexts for event collection and reporting

In order to illustrate how contexts can be used for event collection and reporting,
consider the events from Listing 21 that represent SSH login failures for non-
existing user accounts.

Listing 21: Example sshd login failure events for non-existing users from
/var/log/secure
Nov 13 12:22:30 host sshd [1510]: Failed password for invalid user test from 10.1.1.1 port 54212 ssh2

Nov 13 12:22:33 host sshd [1510]: Failed password for invalid user test from 10.1.1.1 port 54212 ssh2

Nov 13 12:23:23 host sshd [1512]: Failed password for invalid user admin from 10.1.1.1 port 46350 ssh2

Nov 13 12:23:29 host sshd [1512]: Failed password for invalid user admin from 10.1.1.1 port 46350 ssh2

Nov 13 12:23:50 host sshd [1515]: Failed password for invalid user toor from 10.1.1.1 port 35574 ssh2

Nov 13 12:23:55 host sshd [1515]: Failed password for invalid user toor from 10.1.1.1 port 35574 ssh2

First, we will discuss a ruleset that involves the collection of such events in
a �xed 60 second time window (see Listing 22).

Listing 22: The content of /etc/sec/sshd-invalid-report.sec

If there has been an SSH probe of a non -existing user account from

some host , create a reporting context for that host (provided that

the context does not exist already). The context lifetime will be

set to 60 seconds. When the context expires , all events recorded

into the context event store will be mailed to root@localhost.

type=Single

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for invalid user \S+ from ([\d.]+) port \d+ ssh2

context =! SSH_INVALID_ACCOUNT_PROBES_$1

continue=TakeNext

desc=create reporting context for $1

action=create SSH_INVALID_ACCOUNT_PROBES_$1 60 \

(report SSH_INVALID_ACCOUNT_PROBES_$1 mail root@localhost)

Add the SSH probe event to the event store of the host 's context.

Note that if the context did not exist before the arrival of the

current event , the context has been created by the previous rule.

type=Single

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for invalid user \S+ from ([\d.]+) port \d+ ssh2

context=SSH_INVALID_ACCOUNT_PROBES_$1

desc=add SSH account probe event to reporting context for $1

action=add SSH_INVALID_ACCOUNT_PROBES_$1 $0

30

When the events from Listing 21 are processed by the ruleset from Listing
22, the �rst event at 12:22:30 matches the �rst rule. Note that since the context
SSH_INVALID_ACCOUNT_PROBES_10.1.1.1 does not exist, the context
expression given with the context keyword evaluates true. Therefore, the create
action is executed which creates the SSH_INVALID_ACCOUNT_PROBES_10.1.1.1
context with the lifetime of 60 seconds. That context will be used for collecting
all SSH login failures for non-existing users from SSH client host 10.1.1.1 during
the following 60 seconds.

Also, the last parameter of the create action is the action list that will be
executed when the context expires. That action list is enclosed in parentheses
and consists of one report action, and the substitution of the $1 match variable
with 10.1.1.1 in the action list yields the following result:

report SSH_INVALID_ACCOUNT_PROBES_10.1.1.1 mail root@localhost

In other words, when the SSH_INVALID_ACCOUNT_PROBES_10.1.1.1
context expires, its event store will be emailed to root@localhost.

Since the continue keyword of the �rst rule in Listing 22 has the value
TakeNext, the event at 12:22:30 is passed to the following rule after the �rst rule
has matched the event and created the context. The second rule in Listing 22
matches the event, since the SSH_INVALID_ACCOUNT_PROBES_10.1.1.1
context exists and the context expression given with the context keyword thus
evaluates true.3

Since the event matched the rule, the rule executes the following add action:

add SSH_INVALID_ACCOUNT_PROBES_10.1.1.1 <the value of the $0 variable>

Because the $0 match variable holds the entire matching line, the above add
action appends the �rst event from Listing 21 to the event store of the context
SSH_INVALID_ACCOUNT_PROBES_10.1.1.1. Since the event store was
previously empty, that event becomes the �rst event in the store.

The following events at 12:22:33, 12:23:23, and 12:23:29 no longer match the
�rst rule, since the SSH_INVALID_ACCOUNT_PROBES_10.1.1.1 context
exists and the context expression given with the context keyword evaluates false.
However, the second rule matches these events and they are appended to the
end of the context event store in the order of arrival.

At 12:23:31, the context expires and 4 events in its event store are emailed
to root@localhost. In the body of the email, the events are in the same order as
in Listing 21 (i.e., in the order of arrival). After the email has been sent with
the report action, the context is immediately deleted.

When the �fth event from Listing 21 appears at 12:23:50, the context is
created again, with the event becoming the �rst event in the event store of the
context. Also, the sixth event at 12:23:55 will become the second event in the
event store. At 12:24:51, the context expires again, and 2 events from its event
store will be emailed to root@localhost.

In Listing 23, a slightly modi�ed version of the previous ruleset has been
provided. The modi�ed version introduces the set action into the second rule.

3Note that this rule does not actually need the context keyword, since the context always
exists when an event is matched by the rule. This keyword has been included in the rule
de�nition for illustrating the fact that contexts created by some rule can be used by in context
expressions of other rules.

31

Listing 23: The content of /etc/sec/sshd-invalid-report2.sec

type=Single

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for invalid user \S+ from ([\d.]+) port \d+ ssh2

context =! SSH_INVALID_ACCOUNT_PROBES_$1

continue=TakeNext

desc=create reporting context for $1

action=create SSH_INVALID_ACCOUNT_PROBES_$1 60 \

(report SSH_INVALID_ACCOUNT_PROBES_$1 mail root@localhost)

Add the SSH probe event to the event store of the host 's context.

Also , extend the lifetime of the context by 60 seconds starting

from the current moment.

type=Single

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for invalid user \S+ from ([\d.]+) port \d+ ssh2

context=SSH_INVALID_ACCOUNT_PROBES_$1

desc=add SSH account probe event to reporting context for $1

action=add SSH_INVALID_ACCOUNT_PROBES_$1 $0; \

set SSH_INVALID_ACCOUNT_PROBES_$1 60

The set action can be used for modifying context's lifetime and the action
list that is executed on the expiration of the context. In the second rule, set
changes the context lifetime by setting it to 60 seconds starting from the current
moment. In other words, each time the rule appends a new event to context's
event store, the lifetime of the context is extended for the following 60 seconds.

Therefore, the context will exist as long as any two consecutive events in its
event store are separated by at most 60 seconds. The context expires when more
than 60 seconds have elapsed since the last event was added to its event store.
This kind of event collection and reporting method is useful for tracking error
conditions that have no �xed duration, and the absence of relevant messages
during some time frame indicates the end of the error condition.

For example, in the case of events from Listing 21, they are all added to
the event store of the SSH_INVALID_ACCOUNT_PROBES_10.1.1.1 context
after it has been created at 12:22:30. The context will expire at 12:24:56 (i.e.,
61 seconds after the last event was added) and all 6 events are emailed to
root@localhost before the context is deleted.

4.4 Pattern match caching

When one studies the rulesets from Listings 22 and 23 more closely, it is easy
to see that the rules of both rulesets are sharing the same regular expression
pattern:

sshd\[\d+\]: Failed .+ for invalid user \S+ from ([\d.]+) port \d+ ssh2

Due to the continue=TakeNext setting in the �rst rule, matching events are
always passed to the second rule for further processing. Also, in the case the
event does not match the �rst rule, the second rule is tried (again unsuccess-
fully). In other words, the rulesets from Listings 22 and 23 involve the matching
of the same regular expression twice against every event.

32

For avoiding such redundant work, SEC supports pattern match caching � if
a pattern matches, it is possible to store the result of the match (i.e., the values
of all match variables) to the pattern match cache. Also, further rules can search
the pattern match cache for entries that indicate a previous match by speci�c
pattern. That allows to avoid repeated matching of the same pattern against
the same input event.

For understanding this concept, consider the ruleset from Listing 24 that is
a modi�cation of the previous ruleset from Listing 23.

Listing 24: The content of /etc/sec/sshd-invalid-report3.sec

If the regular expression of the rule matches , the result

of the match (i.e., all match variables and their values)

will be cached under the pattern match cache entry SSH_PROBE.

type=Single

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for invalid user \S+ from ([\d.]+) port \d+ ssh2

varmap=SSH_PROBE

context =! SSH_INVALID_ACCOUNT_PROBES_$1

continue=TakeNext

desc=create reporting context for $1

action=create SSH_INVALID_ACCOUNT_PROBES_$1 60 \

(report SSH_INVALID_ACCOUNT_PROBES_$1 mail root@localhost)

In order to match the input event , the presence of the SSH_PROBE

entry in the pattern match cache is checked. If the SSH_PROBE

entry is found , the pattern matches and all match variables and

their values will be retrieved from the SSH_PROBE entry. If the

entry is not found , the pattern does not match.

type=Single

ptype=Cached

pattern=SSH_PROBE

context=SSH_INVALID_ACCOUNT_PROBES_$1

desc=add SSH account probe event to reporting context for $1

action=add SSH_INVALID_ACCOUNT_PROBES_$1 $0; \

set SSH_INVALID_ACCOUNT_PROBES_$1 60

The �rst rule of the ruleset contains an additional varmap keyword which
creates a new pattern match cache entry with the name SSH_PROBE, provided
that the regular expression pattern of the rule has matched an input event. The
SSH_PROBE entry holds all match variables and their values produced by the
regular expression match. If the regular expression does not match an input
event, the entry is not created.

It is important to note that in the case of the regular expression match,
the SSH_PROBE entry is created before the context expression given with the
context keyword is evaluated. In other words, the creation of pattern match
cache entries depends solely on pattern matching.

The second rule of the ruleset from Listing 24 has a pattern of type Cached.
In the case of this pattern type, the pattern is the name of a pattern match
cache entry. The pattern matches an input event if and only if the pattern
match cache entry with the given name exists in the pattern match cache. Also,
if the pattern matches, all match variables and their values will be retrieved
from the pattern match cache entry.

33

As can be seen from Listing 24, the second rule searches the pattern match
cache for the entry SSH_PROBE. Finding that entry indicates that the regu-
lar expression of the �rst rule has matched the current input event, and also
produces a match by the Cached pattern of the second rule. In the case of the
match, the Cached pattern creates exactly the same match variables as the �rst
rule did, setting these variables to the same values as in the �rst rule. There-
fore, the use of the Cached pattern in the ruleset from Listing 24 helps to avoid
redundant work and needless repeated matching of the same regular expression
against the same input.

Finally, note some facts about the pattern match cache:

� The pattern match cache entries that have been created for some input
event remain in the cache only as long as this input event is being processed
by rules. When the processing of the input event ends, the pattern match
cache is cleared.

� For any input event, more than one pattern match cache entry can be
created � when the event is being processed by rules, the patterns of several
rules can match the event, with each rule creating a di�erent cache entry.

4.5 Internal contexts

When SEC is monitoring several input �les, the following issue can arise � a
rule that has been designed for processing events from one input �le acciden-
tally matches an event from another input �le. For example, generic regular
expression patterns like error: (.+) can be one reason for such unexpected
matches.

For addressing this issue, SEC supports internal contexts. Internal contexts
are not explicitly created from rules and event correlation operations, but are
rather set up automatically for indicating that the currently processed event
originates from a speci�c input �le. Similarly to a pattern match cache entry,
an internal context exists while the current input event is being processed by
rules. When the processing of the event is complete, the context is deleted.

The creation of internal contexts can be activated with the --intcontexts
command line option, for example:

sec --intcontexts --conf=echo2.sec

--input=/var/log/messages --input=/var/log/secure

With this option, internal context _FILE_EVENT_/var/log/messages is
created before processing an input event from /var/log/messages. This internal
context is removed once the processing of the input event is complete. Also, in-
ternal context _FILE_EVENT_/var/log/secure is set up while an input event
from /var/log/secure is being processed.

For example, suppose SEC was started with the above command line and
echo2.sec con�guration �le containing the rule from Listing 25.

The rule from Listing 25 will echo all input lines from /var/log/messages
to standard output, ignoring input lines from /var/log/secure. As this example
illustrates, the use of internal contexts allows for restricting the matches by
generic regular expression patterns to events from speci�c input �les only.

34

Listing 25: The content of /etc/sec/echo2.sec

type=Single

ptype=RegExp

pattern =.

context=_FILE_EVENT_/var/log/messages

desc=echo input line from /var/log/messages

action=write - $0

The user can also con�gure custom names for internal contexts. For example,
the following command line will set up internal context SECURE for input
events from /var/log/secure:

sec --intcontexts --conf=echo2.sec

--input=/var/log/messages --input=/var/log/secure=SECURE

Note that con�guring custom internal context name(s) on command line will
automatically enable the --intcontexts option, and therefore its presence is
not strictly required in the above command line.

Finally, for patterns that support match variables (e.g., regular expres-
sion patterns), SEC automatically sets up match variables $+{_inputsrc} and
$+{_intcontext} that hold the input �le name and its internal context name
respectively. If the creation of internal contexts has not been activated, the
$+{_intcontext} variable remains unset.

For example, the rule from Listing 26 will echo input lines from /var/log/mes-
sages and /var/log/secure to standard output, preceding each line with the
names of input �le and internal context.

Listing 26: The content of /etc/sec/echo3.sec

type=Single

ptype=RegExp

pattern =.

context=_FILE_EVENT_/var/log/messages || _FILE_EVENT_/var/log/secure

desc=echo input lines from /var/log/messages and /var/log/secure

action=write - $+{ _inputsrc} $+{ _intcontext} $0

As we have learned before, the context expression given with the context
keyword is evaluated after the regular expression pattern match (that allows to
include match variables in context names). However, in the case of the rule from
Listing 26, internal context names do not contain any match variables. Also,
in such cases it is often worthwhile to evaluate the context expression before
a more expensive regular expression match. For example, if most input lines
are not originating from /var/log/messages and /var/log/secure, the rule from
Listing 26 spends a lot of CPU time on needless regular expression matching.

For evaluating the context expression before the pattern match, it has to be
enclosed in square brackets. Listing 27 provides a relevant example that is a
modi�cation of the rule from Listing 26.

35

Listing 27: The content of /etc/sec/echo4.sec

type=Single

ptype=RegExp

pattern =.

context =[_FILE_EVENT_/var/log/messages || _FILE_EVENT_/var/log/secure]

desc=echo input lines from /var/log/messages and /var/log/secure

action=write - $+{ _inputsrc} $+{ _intcontext} $0

5 Synthetic events

In the previous section, we discussed contexts that allow for joining several rules
into one event processing scheme. This section discusses synthetic events that
o�er another opportunity for creating more complex event correlation schemes
from individual rules.

5.1 Introduction to synthetic events

Synthetic events are special kind of input events for SEC rules that are not read
from input �les, but rather created with SEC actions. Some synthetic events are
generated by SEC itself on startup and reception of speci�c signals. Synthetic
events receive the same treatment as other input events and are processed by
rules in the same way.

The simplest SEC action for generating a synthetic event is the event action.
Consider the following example action:

event 5 This is an example event

This action schedules the synthetic event This is an example event to be
generated after 5 seconds. The following action generates the synthetic event
This is an example event immediately (i.e., with a time delay of 0 seconds):

event 0 This is an example event

Also, if the text of the synthetic event does not begin with a numeral, 0 can
be omitted, and the above example can be thus rewritten as follows:

event This is an example event

If SEC has been started with the --intcontexts option, synthetic events
that have been created with SEC actions have the internal context _INTER-
NAL_EVENT. For generating synthetic events with custom internal context
names, the cevent action can be used. For example, the following action trig-
gers the synthetic event This is a test message immediately with internal context
MESSAGES:

cevent MESSAGES 0 This is a test message

Listing 28 provides an example ruleset of two rules, where event correlation
operations started by the �rst rule use the event action to provide input events
for the second rule.

36

Listing 28: The content of /etc/sec/sshd-fail-wo-success-count.sec

if an SSH login failure is observed for some user from host

<ip> which is not followed by a successful login for the same

user from this host during 2 minutes , generate a synthetic event

'SSH_PROBE_FROM_HOST_ <ip >'

type=PairWithWindow

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for (\S+) from ([\d.]+) port \d+ ssh2

desc=user $1 ip $2

action=event SSH_PROBE_FROM_HOST_$2

ptype2=RegExp

pattern2=sshd \[\d+\]: Accepted .+ for $1 from $2 port \d+ ssh2

desc2=SSH login successful for %1 from %2

action2=logonly %s

window =120

match synthetic events generated by event correlation operations

of the previous rule , and send a warning email to root@localhost

if the same host has made 3 SSH probes in 300 seconds

type=SingleWithThreshold

ptype=RegExp

pattern=SSH_PROBE_FROM_HOST_ ([\d.]+)

desc=ip $1

action=pipe 'Repeated account probing from $1' mail root@localhost

thresh =3

window =300

If an SSH login failure event is observed for some user name and SSH client
host, the �rst rule in Listing 28 starts a PairWithWindow event correlation
operation for that user name and client host combination. The event correlation
operation will wait for a successful login event for this user from the same client
host. If the expected event does not arrive within 120 seconds (2 minutes), the
event correlation operation generates the following synthetic event:

SSH_PROBE_FROM_HOST_<IP address of the SSH client host>

This synthetic event serves as an input for the second rule in Listing 28,
since the regular expression pattern of the rule matches the synthetic event.
The rule starts a SingleWithThreshold event correlation operation for each IP
address observed in matching synthetic events. If an operation that is running
for some IP address observes 3 synthetic events during 300 seconds (5 minutes)
for this IP address, a warning email is sent to root@localhost.

Rules and event correlation operations that are accepting synthetic events
for input can also produce synthetic events for output. This output can be
processed by further rules and event correlation operations which facilitates the
creation of event processing pipelines of any length.

5.2 Generating synthetic events from Calendar rule

Suppose you have a script that makes a critical backup of your system and starts
every evening at 6:00 PM. Also, the script normally runs about 2-3 minutes and
produces the following syslog message after successfully made backup:

37

Nov 17 18:02:03 myhost backup.sh[23119]: Backup completed

Suppose you need to generate an alert if the backup script fails to start
without producing any message, or runs too long without completing by 6:05
PM. It is a subtle task since an alert needs to be triggered not by the appearance
of some backup script message pattern in some time window, but rather by the
absence of any messages between 6:00 and 6:05 PM.

SEC Calendar rule has been designed for addressing such tasks and it exe-
cutes action lists at speci�c times. The Calendar rule uses a crontab-like time
speci�cation with some subtle di�erences that are discussed below. Also, Listing
29 provides an example ruleset that illustrates the use of the Calendar rule.

Listing 29: The content of /etc/sec/backup.sec

generate a synthetic event 'Checking if backup is done '

every evening at 5:59 PM

type=Calendar

time =59 17 * * *

desc=trigger backup check

action=event Checking if backup is done

after observing the synthetic event , wait for the backup

completion message during the following 6 minutes , and

send a warning email if it does not arrive

type=PairWithWindow

ptype=SubStr

pattern=Checking if backup is done

desc=checking for backup

action=pipe 'Backup not completed on time ' mail root@localhost

ptype2=RegExp

pattern2=backup \.sh\[\d+\]: Backup completed

desc2=Backup completed

action2=logonly %s

window =360

The �rst rule in Listing 29 is the Calendar rule with the following time
speci�cation:

59 17 * * *

The �rst two �elds denote 5:59 PM, and since asterisks are provided for
the day (third �eld), month (fourth �eld), and weekday (�fth �eld), the entire
time speci�cation denotes �5:59 PM every day�. Therefore, the Calendar rule
generates a synthetic event Checking if backup is done every evening at 17:59.

This synthetic event is matched by the following PairWithWindow rule that
starts an event correlation operation at 17:59. This operation will expect the
Backup completed message from the backup script backup.sh, and if this message
does not arrive during the following 360 seconds (6 minutes, i.e., by 18:05),
the operation sends the warning message Backup not completed on time to
root@localhost.

Note that the context keyword with a context expression can be included in
the Calendar rule de�nition that allows for executing the rule action list only
if the context expression evaluates true. Also, apart from generating synthetic

38

events, the action keyword of the Calendar rule can be used for specifying any
action list, and SEC can thus act as a simple replacement for the UNIX cron
daemon. However, the time speci�cation of the Calendar rule has some subtle
di�erences from standard crontab speci�cation.

First, although conditions set by time speci�cation �elds are mostly joined
by logical AND, crontab joins conditions for the day (third �eld) and weekday
(�fth �eld) by logical OR. For example, consider the following time speci�cation:

0 6 25-31 10 7

With crontab, that time speci�cation denotes the following time moments:

� 6:00 AM every day starting from October 25 until October 31 (the last 7
days in October),

� 6:00 AM every Sunday in October.

In contrast, the Calendar rule joins all conditions with logical AND, and
the above time speci�cation denotes the following � 6:00 AM on a Sunday in
October, provided that this Sunday is among the last 7 days in October. This
time description can be rephrased as follows � 6:00 AM on the last Sunday of
October.

The previous example leads to the following question � how to denote the last
day of the month? Whereas standard crontab allows values from 1 to 31 for day
(third �eld), the Calendar rule also supports the value of 0 which matches the
last day of the month. For example, consider the following time speci�cation:

55 23 0 * *

This time speci�cation denotes 11:55 PM on the last day of every month.
For example, in February 2023 that would mean February 28 11:55 PM, whereas
in February 2024 that would mean February 29 11:55 PM.

Unlike crontab, the time speci�cation of the Calendar rule also has an op-
tional sixth �eld for matching years. Allowed values range from 0 to 99 that
denote the last two digits of the year. For example, consider the following time
speci�cation:

0 1 1 1 * */2

This time speci�cation denotes 1:00 AM on January 1 in every even year
(e.g., 2020 and 2022, but not 2021). For matching 1:00 AM on January 1 for
odd years, the following time speci�cation can be used:

0 1 1 1 * 1-99/2

5.3 Receiving synthetic events from periodically executed

commands

In previous sections, we discussed how to generate synthetic events with the
event and cevent actions. While these actions are powerful, it is often useful to
receive data from commands started by SEC, and process received data with
SEC rules.

The spawn action addresses this task � it starts a user-de�ned command line
and reads its standard output, so that each line in the standard output becomes
a synthetic event. For example, consider the following action:

39

spawn echo This is a test

This action forks a process for executing the echo command asynchronously.
Since that command writes a line This is a test to standard output, this line
becomes a synthetic event. If the command runs for longer amount of time and
does not produce immediate output, SEC will check after short time periods
whether new data have become available for reading.

In order to disambiguate synthetic events of external commands from other
input, the cspawn action can be used for setting speci�c internal context for
synthetic events. For example, consider the following action:

cspawn TEST echo This is a test

This action generates the synthetic event This is a test with internal context
TEST.

As another example, Listing 30 depicts the output from the df command
that provides information about the usage of �le systems (see the third column
in the output).

Listing 30: Example output from df command

df -t xfs --output ="source ,target ,pcent"

Filesystem Mounted on Use%

/dev/md125 / 9%

/dev/md126 /boot 29%

/dev/md124 /data 96%

Also, Listing 31 provides an example ruleset for detecting �le systems that
have been used by 95% or more (this ruleset assumes that SEC has been started
with the --intcontexts command line option).

Listing 31: The content of /etc/sec/df.sec

type=Calendar

time=* * * * *

desc=run df command in every minute

action=cspawn DF df -t xfs --output ="source ,target ,pcent"

type=Single

ptype=RegExp

pattern =^(\S+)\s+(\S+)\s+(9[5 -9]|100)%

context=DF && !FS_ALERT_$1

desc=file system $1 is getting full

action=pipe 'File system $1 mounted on $2 is used by $3%' \

mail root@localhost; create FS_ALERT_$1 3600

The �rst rule (Calendar) in Listing 31 executes the df command once in
every minute with the cspawn action, creating a synthetic event from every line
that has been read from the standard output of df. For disambiguating these
synthetic events from regular input events received from input �les, internal
context DF is used.

The regular expression pattern of the second rule (Single) in Listing 31
matches these synthetic events, provided that the �le system usage is at least

40

95%. Also, the context expression given the context keyword veri�es that a
line that matches the regular expression is indeed originating from the cspawn
action in the �rst rule. In addition, the context expression also veri�es that the
context FS_ALERT_〈�le system〉 does not exist for the given �le system.

For �le systems with high usage, the second rule sends a warning email
to root@localhost and creates the FS_ALERT_〈�le system〉 context with the
lifetime of 3600 seconds (1 hour). The presence of that context suppresses
repeated emails about the same �le system for the following 1 hour.

For example, when lines from Listing 30 are processed by the second rule, the
last line for the �le system /dev/md124 matches, and the following email warn-
ing message is sent to root@localhost : File system /dev/md124 mounted on /data
is used by 96%. After sending that email, the context FS_ALERT_/dev/md124
is created that suppresses further emails about the /dev/md124 �le system for
1 hour.

Note that the context keyword of the second rule from Listing 31 de�nes a
context expression that has been con�gured to be evaluated after the regular
expression match, since one of the context names (FS_ALERT_$1) contains
a match variable that is set by the regular expression. For having the context
expression evaluated before the regular expression is tried, one can employ the
SingleWithSuppress rule as illustrated in Listing 32. Note that the context
expression of the SingleWithSuppress rule is no longer containing any match
variables and can thus be enclosed in square brackets, forcing its evaluation
before the regular expression match is attempted (if the context expression
evaluates false, the regular expression is not tried).

Listing 32: The content of /etc/sec/df2.sec

type=Calendar

time=* * * * *

desc=run df command in every minute

action=cspawn DF df -t xfs --output ="source ,target ,pcent"

type=SingleWithSuppress

ptype=RegExp

pattern =^(\S+)\s+(\S+)\s+(9[5 -9]|100)%

context =[DF]

desc=file system $1 is getting full

action=pipe 'File system $1 mounted on $2 is used by $3%' \

mail root@localhost

window =3600

The SingleWithSuppress rule from Listing 32 starts a separate event cor-
relation operation for each �le system, and the operation processes events as
follows:

� when the operation observes the �rst event (i.e., the event that triggered
the creation of the operation), the pipe action de�ned with rule's action
keyword is executed,

� all following events (i.e., the second, the third, etc.) are consumed silently
by the operation during 3600 seconds (the value of the window keyword),

� when the window of 3600 seconds expires (i.e., more than 3600 seconds
have elapsed since the arrival of the �rst event), the operation terminates.

41

Therefore, the rulesets from Listings 31 and 32 produce the same output.

5.4 Receiving synthetic events from inde�nitely running

commands

In some cases, it is necessary to collect synthetic events from commands that
run inde�nitely. Ideally, the command should start and terminate together with
SEC. That raises the following question � how to detect from rules that SEC
has just started or is going to terminate?

For addressing this issue, the --intevents command line option activates
the generation of special synthetic events when SEC starts or receives speci�c
signals. For example, on startup the synthetic event SEC_STARTUP is gener-
ated that will be the very �rst event for SEC rules to process. On the reception
of the HUP signal, SEC goes through so called full restart � it drops all event
correlation state, terminates all child processes, reloads all con�guration �les,
and reopens all input �les. When full restart is complete, the synthetic event
SEC_RESTART is generated. Also, when SEC is terminated with the TERM
signal, the synthetic event SEC_SHUTDOWN is generated.

For other synthetic events that are activated by the --intevents option,
see the o�cial documentation. For all such synthetic events, internal context
SEC_INTERNAL_EVENT is used.

Listing 33 displays an example ruleset for executing the nc command when
SEC starts up or has gone through full restart, so that input events can be
received from port 10514/tcp. The ruleset assumes that SEC has been started
with --intevents and --intcontexts options.

Listing 33: The content of /etc/sec/nc.sec

type=Single

ptype=RegExp

pattern =^(?: SEC_STARTUP|SEC_RESTART)$

context =[SEC_INTERNAL_EVENT]

desc=listen on 10514/ tcp for incoming events

action=cspawn NETCAT nc -l -k 10514

type=Single

ptype=RegExp

pattern =.

context =[NETCAT]

desc=echo events from 10514/ tcp

action=write - $0

The �rst Single rule in Listing 33 matches synthetic events SEC_STARTUP
and SEC_RESTART, and for disambiguating them from other similarly looking
events, the presence of internal context SEC_INTERNAL_EVENT is veri�ed
before the regular expression match is attempted. When either of these synthetic
events is observed, the following command line is started with the cspawn action:

nc -l -k 10514

That command line receives input lines from port 10514/tcp and prints them
to standard output, and the cspawn action turns them into synthetic events with
internal context NETCAT.

42

Note that if the �rst rule in Listing 33 would only match the SEC_STARTUP
event, the nc command would not be restarted after SEC has gone through full
restart that involves terminating the previous instance of nc.

The second Single rule in Listing 33 matches synthetic events received from
the nc command and echoes them to standard output. To avoid matching other
input lines against the regular expression pattern of the rule, the rule veri�es the
presence of the NETCAT internal context before the regular expression match
is attempted.

When SEC terminates, all its child processes (including the nc process) will
be terminated with the TERM signal by default. Therefore, there is no need
to have another rule in Listing 33 for terminating the nc command when the
SEC_SHUTDOWN synthetic event appears.

6 Advanced topics

This section covers some advanced topics such as creating hierarchical rulebases
and using custom Perl code in rule de�nitions.

6.1 Hierarchical rulebases

As discussed in Section 2.4, when several con�guration �les have been speci�ed
on SEC command line, by default all con�guration �les are applied for processing
an input event. However, using a larger number of con�guration �les with many
rules might introduce a signi�cant computational overhead.

For example, consider a scenario with 10 con�guration �les, each containing
30 rules for processing messages from a speci�c application (i.e., there are 300
rules in total). When an input message arrives that has relevant rules only
in one of the con�guration �les, 270 rules from 9 other con�guration �les are
needlessly matched against the input event.

For addressing this issue, rulesets can be organized in a hierarchical fashion
with the help of Jump and Options rules. This section describes an example
hierarchical rulebase that involves 4 con�guration �les:

� main-rules.sec � level 1 ruleset of Jump rules that are applied against
all input events from /var/log/messages and /var/log/secure, so that the
Jump rules direct input events to relevant level 2 con�guration �les for
further processing,

� iptables-rules.sec � level 2 ruleset for processing iptables events. The rule-
set receives all input events from a level 1 Jump rule in main-rules.sec,
using the Options rule to subscribe to these input events,

� sshd-rules1.sec � level 2 ruleset for processing SSH authentication events.
The ruleset receives all input events from a level 1 Jump rule in main-
rules.sec, using the Options rule to subscribe to these input events,

� sshd-rules2.sec � level 2 ruleset for processing SSH authentication events
and related synthetic events. The ruleset receives all input events from
level 1 Jump rules in main-rules.sec, using the Options rule to subscribe
to these input events.

43

Also, suppose SEC has been started with the following command line:

sec --conf=/etc/sec/main-rules.sec --conf=/etc/sec/iptables-rules.sec

--conf=/etc/sec/sshd-rules1.sec --conf=/etc/sec/sshd-rules2.sec

--input=/var/log/messages --input=/var/log/secure --intcontexts

Listing 34 provides the level 1 ruleset of 3 Jump rules. Note that Jump rules
do not start any event correlation operations and their sole purpose is to direct
matching events to speci�c rulesets for further processing.

Listing 34: The content of /etc/sec/main-rules.sec

type=Jump

ptype=SubStr

pattern=kernel: iptables:

context =[_FILE_EVENT_/var/log/messages]

cfset=iptables

type=Jump

ptype=RegExp

pattern=sshd \[\d+\]:

context =[_FILE_EVENT_/var/log/secure]

cfset=sshd1 sshd2

type=Jump

ptype=TValue

pattern=True

context =[SSH]

cfset=sshd2

The �rst Jump rule in Listing 34 directs iptables events that have been re-
ceived from /var/log/messages to the ruleset in iptables-rules.sec. It is assumed
that iptables events have the format depicted in Figure 15 (see Section 3.6). For
recognizing iptables events, the �rst rule veri�es the presence of the internal con-
text of the /var/log/messages input �le (_FILE_EVENT_/var/log/messages),
and then uses the SubStr pattern for matching a message header of iptables
events.

The �rst Jump rule also features the cfset keyword that provides the name
of the con�guration �le set (iptables) where the processing of matching events
should continue. Con�guration �le set is a collection of one or more con�gura-
tion �les that have a common name and can be targeted from Jump rules. A
con�guration �le can be assigned to a con�guration �le set with the joincfset
keyword of the Options rule.

For example, the con�guration �le in Listing 35 has the Options rule that
joins that con�guration �le to the con�guration �le set iptables. Since the �rst
Jump rule in Listing 34 directs matching events to iptables con�guration �le set
for further processing, the ruleset from Listing 35 will receive these events as
input.

The set names for the joincfset keyword of the Options rule can be freely
chosen. If a new set name is introduced that has not been used in other con�gu-
ration �les, a new con�guration �le set with the given name is created that has
the current con�guration �le as its only member. Note that the joincfset key-
word of the Options rule can be employed for joining the current con�guration
�le to more than one set if several set names are provided.

44

Listing 35: The content of /etc/sec/iptables-rules.sec

type=Options

procallin=no

joincfset=iptables

type=SingleWithThreshold

ptype=RegExp

pattern=kernel: iptables :.* SRC =([\d.]+)

context =! PACKET_DROPS_REPORTED_$1

desc=packet drops IP $1

action=pipe 'Too many dropped packets from $1' mail root@localhost; \

create PACKET_DROPS_REPORTED_$1 3600

window =10

thresh =100

Also, note that the procallin keyword has the value no in the Options rule
in Listing 35. That setting means that the ruleset in the con�guration �le is
accepting input events from Jump rules only. Setting procallin to yes would
mean that the ruleset in Listing 35 is accepting the following input events:

� input events received from /var/log/messages and /var/log/secure (i.e.,
the input events of the level 1 ruleset in Listing 34),

� input events received from Jump rules that submit them to iptables con-
�guration �le set.

As can be seen from Listing 34, the cfset keyword of the second Jump rule
speci�es two con�guration �le sets sshd1 and sshd2. In such cases, a matching
input event is submitted to con�guration �le sets in the same order as they have
been provided for the cfset keyword. For example, after the second Jump rule
in Listing 34 has matched an SSH authentication event, it is �rst submitted to
con�guration �le set sshd1 (see Listing 36) and then to con�guration �le set
sshd2 (see Listing 37).

If the Jump rule submits events to a con�guration �le set with more than
one con�guration �le, they are applied in traditional order as discussed in Sec-
tion 2.4. Namely, the application order is determined by the order of --conf
command line options, and if one --conf option matches several �les, their
application order is determined by system locale.

The third Jump rule in Listing 34 is matching synthetic events with internal
context SSH, submitting them to con�guration �le set sshd2 for further pro-
cessing (see Listing 37). This Jump rule is featuring a TValue pattern set to
True that matches all input events without setting any match variables. If the
TValue pattern is set to False, it does not match any events. Note that the
synthetic events matched by the third Jump rule in Listing 34 rule originate
from the ruleset in Listing 37, and the Jump rule directs these synthetic events
back to the same ruleset for further processing.

Finally, similarly to other SEC rules, the Jump rule supports the continue
keyword that allows to continue the search for other matching rules in the same
con�guration �le after the con�guration �le set speci�ed in the Jump rule has
processed an input event (see Section 2.4 for more details). For example, if the
�rst Jump rule in Listing 34 would have the continue=TakeNext setting, all ipt-
ables events would be passed to further rules after they have been processed by

45

Listing 36: The content of /etc/sec/sshd-rules1.sec

type=Options

procallin=no

joincfset=sshd1

type=SingleWithThreshold

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for invalid user \S+ from ([\d.]+) port \d+ ssh2

desc=ip $1

action=pipe 'Repeated probing of non -existing accounts from $1 ' \

mail root@localhost

thresh =10

window =300

Listing 37: The content of /etc/sec/sshd-rules2.sec

type=Options

procallin=no

joincfset=sshd2

type=PairWithWindow

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for (\S+) from ([\d.]+) port \d+ ssh2

desc=user $1 ip $2

action=cevent SSH 0 SSH_PROBE_FROM_HOST_$2

ptype2=RegExp

pattern2=sshd \[\d+\]: Accepted .+ for $1 from $2 port \d+ ssh2

desc2=SSH login successful for %1 from %2

action2=logonly %s

window =120

type=SingleWithThreshold

ptype=RegExp

pattern=SSH_PROBE_FROM_HOST_ ([\d.]+)

desc=ip $1

action=pipe 'Repeated account probing from $1' mail root@localhost

thresh =3

window =300

46

the ruleset in Listing 35 (the second and third Jump rule would not be matching
iptables events, though). Although the ruleset in Listing 34 does not use that
approach, continue keywords can be employed for con�guring the processing of
the same input event by several Jump rules in the same con�guration �le.

Organizing rulesets in a hierarchical fashion as described in this section can
greatly reduce the CPU time consumption, since it prevents irrelevant rules from
being matched against input events. For example, as reported in [7], the CPU
load decreased 4-5 times after the introduction of a hierarchical arrangement
for a larger rulebase of 375 rules.

6.2 Using custom code in context expressions

In Section 5.3, we discussed rule examples for processing synthetic events from
the df command. The rule examples from Listings 31 and 32 triggered email
alerts if the disk usage reached 95..100%. For checking that the disk usage is at
least 95%, a regular expression is used in the rule examples, but such checks are
often much more convenient to implement with arithmetic match conditions.

For example, consider the following highly unusual SSH login failure that
originates from a privileged port of a remote host (i.e., the port number is less
than 1024):

Nov 20 13:19:38 myhost sshd[13477]: Failed password for charles

from 192.168.56.1 port 80 ssh2

Although it is possible to write a regular expression for detecting such lo-
gin failures from privileged ports, it is cumbersome and an arithmetic match
condition port < 1024 would be more convenient. Listing 38 provides an ex-
ample Single rule that illustrates the use of arithmetic match conditions in rule
de�nitions.

Listing 38: The content of /etc/sec/sshd-priv-port.sec

type=Single

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for (\S+) from ([\d.]+) port (\d+) ssh2

context=$3 -> (sub { $_[0] < 1024 })

desc=failed login attempt from privileged port

action=write - SSH login failure for $1 from privileged port $3 at $2

The example rule in Listing 38 employs a context expression that consists
of one operand:

$3 -> (sub { $_[0] < 1024 })

That operand involves an execution of custom Perl code, and in the following
the structure of this operand is discussed more closely.

The part of the operand that follows the arrow sign (->) and is enclosed in
parentheses is a de�nition of an anonymous Perl function (subroutine):

sub { $_[0] < 1024 }

47

In Perl, the function de�nition always starts with the sub keyword. Normally,
the function name would be given after sub, but since the above function is
anonymous, the body of the function in curly braces ({ ... }) will immediately
follow:

$_[0] < 1024

In the function body, the $_[0] variable denotes the �rst input parameter
of the function. The function body contains just one statement that checks if
the �rst input parameter is less than 1024. Since it is the only statement in the
function, the result of the comparison becomes the return value of the function.

The return value of the function determines if the entire operand evaluates
true or false. Obviously, the operand is true if and only if the value of the �rst
input parameter is less than 1024.

Before the arrow sign (->), the list of input parameters for the function is
given. Input parameters are separated by whitespace characters and in the case
of the current example, the only input parameter is the $3 match variable. Since
this match variable is set to the port number from the SSH login failure event,
the context expression in Listing 38 checks if the port is a privileged one.

The evaluation of this context expression has an important aspect � the
anonymous Perl function is compiled when SEC loads and parses the con�gu-
ration �le in Listing 38. When the context expression needs to be evaluated
during further event processing, a fast previously compiled function body is
called, passing the value of the $3 match variable to the compiled code.

Apart from arithmetic conditions, any custom Perl code can be used in
context expressions, but this involves several aspects you should be aware of:

� Unlike SEC actions (e.g., pipe or shellcmd) that fork processes for asyn-
chronous execution of commands, running custom Perl code involves syn-
chronous execution. Therefore, if the Perl code you have written spends
a lot of time on a complex task, SEC does not continue with other event
processing activities until your code completes.

� If your code experiences a run time error (for example, division by zero),
SEC traps such errors without crashing. However, you will get a warning
message into the SEC log for letting you know that your code is not perfect.

� You have to remember that your custom code is part of the SEC process.
For avoiding naming clashes between SEC data structures and your cus-
tom variables, your code is executed in a separate name space main::SEC.
However, that still gives you an access to SEC data structures when you
explicitly access the main name space, but doing that is recommended
for advanced users only. Furthermore, since your code is part of the SEC
process, calling exit() from your code terminates the entire SEC process.

The context expression in Listing 38 has only one operand, but you can
combine it with other regular context name operands for creating larger context
expressions. For example, consider the following context expression that involves
the && operator (logical AND):

MYCONTEXT && $3 -> (sub { $_[0] < 1024 })

48

However, you have to be aware that the && (logical AND) and || (logical
OR) operators are short-circuiting, and do not evaluate the second operand if
the result has been established after evaluating the �rst operand. For example,
if the context MYCONTEXT does not exist when the above context expression
is evaluated, the custom Perl code in that context expression is not executed.

6.3 Using custom code in event matching patterns

Although regular expression patterns allow for matching many event formats,
sometimes a regular expression is not su�cient for that purpose. To address such
scenarios, SEC supports PerlFunc event matching patterns that are anonymous
Perl functions. In the function body, the user can implement any event process-
ing code that allows for much more powerful event matching than supported by
a regular expression pattern.

Like anonymous functions discussed in the previous section, PerlFunc pat-
terns are compiled when con�guration �les are loaded and parsed, and the
resulting patterns are therefore very fast. Also, PerlFunc patterns feature all
the aspects of executing anonymous functions discussed in the previous section
(such as synchronous nature of the execution).

To illustrate the use of a PerlFunc pattern, Listing 39 provides a pattern
that matches an SSH login failure originating from a privileged port. Note that
since the anonymous Perl function covers more than one line, all lines apart
from the last one are ending with backslash, so that they would be treated as a
single line value for the pattern keyword.

Listing 39: The content of /etc/sec/sshd-priv-port2.sec

type=Single

ptype=PerlFunc

pattern=sub { my(%var); \

if ($_[0] !∼ /sshd \[\d+\]: Failed .+ for (\S+) from ([\d.]+) port (\d+) ssh2/) { \

return 0; \

} \

if ($3 > 1023) { return 0; } \

$var{"user"} = $1; $var{"ip"} = $2; $var{"port"} = $3; \

return \%var; \

}

desc=failed login attempt from privileged port

action=write - SSH login failure for $+{user} from privileged port $+{port} at $+{ip}

The PerlFunc pattern in Listing 39 is designed for matching a single line
input event (e.g., for matching an input event consisting of two lines, PerlFunc2
pattern would be needed). By convention, the input event is passed to PerlFunc
pattern as the �rst parameter of the function (i.e., the $_[0] variable in the
function body).

In order to indicate that the pattern is matching, the function has to return
either several values, or a single value that evaluates true in Perl Boolean context
(a value that is not 0, empty string, or undef).

In order to indicate that the pattern is not matching, the function has to
return either no values, or a single value that is false in Perl Boolean context (0,
empty string, or undef). For that purpose, the function in Listing 39 is using
the value of 0.

49

The function �rst checks if the input event matches the regular expression
for SSH login failure and returns 0 if there is no match. If the regular expression
matches, the $1, $2, and $3 match variables are set. The function then checks
the port number and returns 0 if the number is greater than 1023 (i.e., the port
is not a privileged one).

In the case of the successful regular expression match and privileged port,
the function creates the keys user, ip, and port in the Perl hash (associative
array) %var. The values of those keys are set to the user name (held by the $1
match variable), IP address of the remote host (held by the $2 match variable),
and port number (held by the $3 match variable).

The function then returns a reference to the hash (denoted by \%var). If
SEC receives a single value that is a reference to a hash, it creates match vari-
ables based on the keyword-value pairs in the hash: $+{user} that is set to
user name, $+{ip} that is set to IP address, and $+{port} that is set to port
number.

In addition, several match variables are created automatically: $0 that is
set to the entire matching line, $+{_inputsrc} that is set to input �le name,
and $+{_intcontext} that is set to internal context of the input �le (if the
creation of internal contexts has not been activated on SEC command line, the
$+{_intcontext} variable remains unset).

Finally, using custom code in SEC rules might be cumbersome if the code
involves more than just a few lines. In such cases, it is recommended to put
the custom code into a Perl module that is loaded when SEC starts up, so that
custom code can be called through the module interface. Listing 40 illustrates
this principle by loading the SecJson.pm module and calling the json2matchvar()
function from this module in the PerlFunc pattern (i.e., the PerlFunc pattern
acts as a wrapper for more complex code).

6.4 Using custom code in event group patterns

Consider the SSH login failure events from Listing 41, and suppose that the
following event correlation task needs to be addressed � a warning email must
be sent to root@localhost if 3 login failures are observed for the same user account
within 60 seconds, so that these login failures are originating from 3 di�erent
SSH client hosts.

Without the requirement for 3 unique SSH client hosts, the third event
occurring at 23:04:24 would have to trigger the email, since that event is the
third login failure for the user bob within 60 seconds. However, the 3 login
failures at 23:04:00, 23:04:13, and 23:04:24 involve only 2 SSH client hosts �
10.1.1.7 and 10.1.1.9. Therefore, when considering the requirement for SSH
client hosts, the email warning should be issued at 23:04:47 when the fourth
login failure from previously unseen SSH client host 10.1.1.2 is observed.

An example EventGroup rule in Listing 42 addresses the above event corre-
lation task with the help of a PerlFunc event group pattern.

According to the rule's desc keyword, the rule starts a separate event corre-
lation operation for each user name observed in SSH login failure events. Also,
the rule features the egtoken �eld that con�gures a custom value for represent-
ing a matching event in the event group string. As discussed in Section 3.6, by
default each event is represented by the number that re�ects the number of the
matching pattern in the rule de�nition. Because the rule from Listing 42 has

50

Listing 40: The content of /etc/sec/json.sec

When SEC starts , load the SecJson.pm module (module is available at

https :// github.com/simple -evcorr/rulesets/tree/master/parsing -json)

type=Single

ptype=SubStr

pattern=SEC_STARTUP

context=SEC_INTERNAL_EVENT

desc=load SecJson.pm module

action=eval %o (require '/etc/sec/perl/SecJson.pm '); \

if %o (logonly Module SecJson.pm loaded) \

else (logonly Failed to load SecJson.pm; eval %o exit (1))

When an event is observed which contains the @cee: substring ,

it is assumed that the string which follows @cee: is in JSON format

and the rule attempts to parse it , storing the results into pattern

match cache under the CEE entry. If the JSON string contains

the field "test" (e.g., @cee: {"test ":"abc","test2 ":" def",...),

the value of this field is printed to standard output.

type=Single

ptype=PerlFunc

pattern=sub { if ($_[0] =∼ /\@cee: (.+)/) { \

return SecJson :: json2matchvar($1); } return 0; }

varmap=CEE

desc=test JSON parsing

action=write - The value of test variable: $+{test}

Listing 41: Example sshd login failure events from /var/log/secure

Nov 24 23:04:00 test sshd [1137]: Failed password for bob from 10.1.1.7 port 32182 ssh2

Nov 24 23:04:13 test sshd [1145]: Failed password for bob from 10.1.1.9 port 42176 ssh2

Nov 24 23:04:24 test sshd [1212]: Failed password for bob from 10.1.1.7 port 34191 ssh2

Nov 24 23:04:47 test sshd [1226]: Failed password for bob from 10.1.1.2 port 18999 ssh2

Listing 42: The content of /etc/sec/sshd-3-unique-hosts.sec

type=EventGroup

ptype=RegExp

pattern=sshd \[\d+\]: Failed .+ for (\S+) from ([\d.]+) port \d+ ssh2

desc=user $1

egtoken=$2

egptype=PerlFunc

egpattern=sub { my(%hosts) = map { $_ => 1 } @{$_ [1]}; \

return scalar(keys %hosts) >= 3; }

action=pipe 'SSH login failures from 3 different hosts for user $1 ' \

mail root@localhost

window =60

thresh =3

51

only one regular expression pattern (given with the pattern keyword), the event
group string would have the following format without the egtoken keyword:

1 1 ... 1

However, since the egtoken keyword has the value $2, the event correlation
operations started by the rule from Listing 42 build event group strings from
IP addresses of SSH client hosts extracted from matching events.

As discussed in Section 3.2, event correlation operations generally substitute
match variables only once when the operation is initialized. The value set by the
egtoken �eld is one notable exception from that rule � if the value contains match
variables, they are substituted for every event that the operation is processing.

When the rule in Listing 42 processes example events from Listing 41, all
events are processed by one event correlation operation with the ID 〈/etc/sec/sshd-
3-unique-hosts.sec, 0, user bob〉. As the operation is processing these 4 events,
the event group string is updated as follows:

10.1.1.7

10.1.1.7 10.1.1.9

10.1.1.7 10.1.1.9 10.1.1.7

10.1.1.7 10.1.1.9 10.1.1.7 10.1.1.2

When the third event at 23:04:24 appears, the numeric threshold condition
set by the thresh keyword becomes satis�ed, and therefore the event group string
is matched by the PerlFunc pattern provided with the egpattern keyword. The
anonymous Perl function given with the egpattern keyword receives the following
event group string as its �rst parameter:

10.1.1.7 10.1.1.9 10.1.1.7

In addition, the second parameter ($_[1]) provides a reference to the event
group string in the list format:4

(10.1.1.7, 10.1.1.9, 10.1.1.7)

In the function body, @{$_[1]} represents the list referenced by $_[1], and
the list is processed by Perl builtin map subroutine:

map { $_ => 1 } @{$_[1]}

The above map call creates a Perl hash from the list, assigning the result
to the hash %hosts. Unique list members become keys in the hash, with all
keys having the value of 1. Therefore, from the list submitted to the function
at 23:04:24, the following Perl hash is created and assigned to %hosts:

10.1.1.7 => 1

10.1.1.9 => 1

After creating %hosts, the following statement extracts all keys from %hosts
and �nds their number:

4Passing a reference to the function is signi�cantly cheaper than passing the entire list
which could potentially be very large.

52

scalar(keys %hosts)

The function returns true if %hosts has at least 3 keys, and false otherwise.
In other words, the anonymous function provided with the egpattern keyword
returns true if and only if the event group string (and its list representation)
contain at least 3 unique SSH client host IP addresses.5

Obviously, when the third event from Listing 41 appears at 23:04:24, the
PerlFunc event group pattern does not produce a match. On the other hand,
the arrival of the fourth event at 23:04:47 produces a match, and the event
correlation operation sends the following email to root@localhost : SSH login
failures from 3 di�erent hosts for user bob.

Finally, note that the event correlation scenario described in this section can
also be addressed by combining the EventGroup rule with contexts, and relevant
rule examples have been provided in [7] and SEC o�cial documentation.

7 Conclusion

In this tutorial, we have looked into the essentials of SEC and discussed the
most commonly used rule types, event correlation operations, contexts, and
synthetic events. We have also had a look into some advanced topics like building
hierarchical rulebases and using custom code in rules.

While this tutorial might seem like a large document, we have only covered a
relatively small part of SEC functionality. There are many more things that did
not �t into this tutorial due to space limitations. However, the essentials you
have learned should be su�cient for tackling more advanced event correlation
tasks on your own.

As we mentioned in the very beginning of this tutorial � it does not aim
to be a replacement for the o�cial documentation (SEC man page). You are
therefore encouraged to consult the o�cial documentation as you develop your
own event correlation rulesets.

References

[1] Gabriel Jakobson and Mark Weissman, �Real-time telecommunication net-
work management: Extending event correlation with temporal constraints,�
Proceedings of the 1995 IEEE International Symposium on Integrated Net-
work Management, pp. 290-301, 1995

[2] Risto Vaarandi, �SEC � a Lightweight Event Correlation Tool,� Proceedings
of the 2002 IEEE Workshop on IP Operations and Management, pp. 111-
115, 2002

[3] John P. Rouillard, �Real-time Log�le Analysis Using the Simple Event Cor-
relator (SEC),� Proceedings of the 2004 USENIX Large Installation System
Administration Conference, pp. 133-149, 2004.

5Since the event correlation operation executes its action list only once, we could replace
the >= operator with == in the function. In that case, the event group pattern evaluates
true if and only if the event group string contains exactly 3 unique IP addresses.

53

[4] Risto Vaarandi, �Simple Event Correlator for real-time security log moni-
toring,� Hakin9 Magazine 1/2006 (6), pp. 28-39, 2006.

[5] Risto Vaarandi and Michael R. Grimaila, �Security Event Processing
with Simple Event Correlator,� Information Systems Security Association
(ISSA) Journal 10(8), pp. 30-37, 2012

[6] David Lang, �Using SEC,� USENIX ;login: Magazine 38(6), pp. 38�43,
2013

[7] Risto Vaarandi, Bernhards Blumbergs and Emin Çal�³kan, �Simple Event
Correlator � Best Practices for Creating Scalable Con�gurations,� Proceed-
ings of the 2015 IEEE CogSIMA Conference, pp. 96-100, 2015

[8] Je�rey E. F. Friedl, �Mastering Regular Expressions,� O'Reilly, 1997

[9] https://en.wikipedia.org/wiki/Daemon_(computing)

54

	Introduction
	Introduction to SEC
	The purpose of this tutorial
	Prerequisites

	Getting started
	An example of a simple configuration file
	Running SEC interactively
	Running SEC as a daemon
	Rule application order
	Commonly used SEC actions

	Event correlation
	SingleWithThreshold rule and introduction to event correlation operations
	Variable substitution for event correlation operations
	SingleWithThreshold operations and sliding window based event correlation
	EventGroup rule
	EventGroup operations with multiple actions
	EventGroup rule for detecting ordered event sequences
	PairWithWindow rule

	Contexts and pattern match caching
	Introduction to contexts
	Using contexts for rule activation and deactivation
	Using contexts for event collection and reporting
	Pattern match caching
	Internal contexts

	Synthetic events
	Introduction to synthetic events
	Generating synthetic events from Calendar rule
	Receiving synthetic events from periodically executed commands
	Receiving synthetic events from indefinitely running commands

	Advanced topics
	Hierarchical rulebases
	Using custom code in context expressions
	Using custom code in event matching patterns
	Using custom code in event group patterns

	Conclusion

